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1. Angular Quantities


�Radian measure of angles
































� EMBED Equation.2  ���


� EMBED Equation.2  ���


�For a very small angle, length of the arc is close to the length of the chord (linear distance or displacement)

















Angular velocity is defined as


� EMBED Equation.2  ���,


counter-clockwise rotation is considered positive.


Angular acceleration is defined as


� EMBED Equation.2  ���


Linear tangential velocity of a point :


� EMBED Equation.2  ���
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Tangential acceleration of a point at the rotating body is 


� EMBED Equation.2  ���


The total acceleration of a point is a vector sum of the tangential and centripetal accelerations, 


� EMBED Equation.2  ���
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Example 1: Find angular acceleration of a car that is has (linear) acceleration � EMBED Equation.2  ��� and goes in a circle of radius r=50 m.


The acceleration a specified in the problem is in this case is the tangential acceleration, therefore


� EMBED Equation.2  ���Radian is actually a dimensionless quantity, therefore it does not appear in a formal derivations (actually, there is no need to indicate it).





























2. Kinematics of Uniformly Accelerated Rotation


All relations between linear displacement, velocity and acceleration and their angular counterparts are exactly the same. Therefore we do need to derive them again, but can immediately write them down for uniformly accelerated angular motion:


Angular �
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�
� EMBED Equation.2  ����
� EMBED Equation.2  ����
�
� EMBED Equation.2  ����
� EMBED Equation.2  ����
�
� EMBED Equation.2  ����
� EMBED Equation.2  ���
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Example 2:  A bicycle is slowing uniformly from v0=10.5 m/s to stop over the distance of 140 m. The radius of each tire is 0.35 m. Find (a) the angular velocity of wheels at the initial moment, (b) the total number of revolutions of a wheel before coming to rest, (c) the angular acceleration of the wheels, and (d) the time it takes to stop.
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(a) The velocity of the tire with respect to the axle is exactly v, i.e., the speed of travel. Therefore the initial angular velocity of the wheel is


� EMBED Equation.2  ���





(b) The total angle of the wheel revolution can be found from the total distance traveled, � EMBED Equation.2  ���. Correspondingly, the total number revolutions is


� EMBED Equation.2  ���.


(c) We will find the angular acceleration of the wheel also similar to the linear acceleration, 


� EMBED Equation.2  ���(d) We now find the stopping time, 


� EMBED Equation.2  ���.


3. Torque


Torque is the angular counterpart of force.
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Torque about a given axis equals force times lever arm (+ sign is for counter-clockwise rotating torque)


�� EMBED Equation.2  ���




















The dimensionality of torque is � EMBED Equation.2  ���, formally the same as J, but J is used only for energy and work.





Example 3: Find torque exerted by the biceps on the lower arm keeping a 50-kg load and the force exerted by the biceps.


It is implied that the total torque of all forces should be zero in equilibrium.
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Total torque should be zero (torque rotating counter-clockwise is considered as positive, clockwise as negative), 


� EMBED Equation.2  ���


4. Rotational Dynamics


How torque (for rotation) is similar to force (for linear motion)? Let us look at a (numerical) experiment.
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�� EMBED Package  ���





�
Rotational Inertia and Second Law


�How the form of a body influences rotational dynamics?
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� EMBED Package  ���








�
Conclusion: For a given torque, the rotational acceleration depends on the distribution of masses inside the body -- in contrast to the linear motion.





�Consider the simplest case of one particle moving in a circle, 























� EMBED Equation.2  ���


The quantity � EMBED Equation.2  ��� is called moment of inertia of a single particle. 


We can do the same procedure with all particles of a complex body, and arrive at the rotational counterpart of Newton’s Second Law,


� EMBED Equation.2  ���,


I is moment of inertia, playing for the rotational motion the same role as mass does for translational,





� EMBED Equation.2  ���








Example 1: The distance between the carbon atom (m=12 u) and oxygen atom (m=16 u) in a CO molecule is � EMBED Equation.2  ���m. What is its moment of inertia of the molecule relative to its CM?


The CM of the molecule is � EMBED Equation.2  ��� m from the carbon atom, and � EMBED Equation.2  ���


�Solution: The molecule has the form











Converting to SI: � EMBED Equation.2  ���,


� EMBED Equation.2  ���.


Calculating the moment of inertia:


� EMBED Equation.2  ���





Attention: The moment of inertia depends not only on the distribution of masses, but also on the origin and orientation of the coordinate system . Physically, the moment of inertia depends on the position of the pivot point and direction of the rotation axis.


























Moments of Inertia for Uniform Bodies


Object�
Axis�
�
I�
� EMBED Equation.2  ����
�
�Thin hoop


of radius R�
Through center�
�
� EMBED Equation.2  ����
R�
�
�Uniform cylinder of radius R�
Through center�
�
� EMBED Equation.2  ����
� EMBED Equation.2  ����
�
��Uniform sphere


of radius R�
Through center�
�
� EMBED Equation.2  ����
� EMBED Equation.2  ����
�
��Uniform rod of length L�
Through center�
�
� EMBED Equation.2  ����
� EMBED Equation.2  ����
�
��Uniform rod of length L�
Through end�
�
� EMBED Equation.2  ����
� EMBED Equation.2  ����
�



Example: A wheel (uniform cylinder) of radius r=0.33 m is accelerated by a force of 15 N from rest to � EMBED Equation.2  ���. Friction in the bearings creates torque of � EMBED Equation.2  ���. Find wheel’s moment of inertia I.


�Solution: 














Torque is equal


� EMBED Equation.2  ���


Angular acceleration can also be found immediately,


� EMBED Equation.2  ���.


From the “Second Law”, we have


� EMBED Equation.2  ���








5. Rotational KE


Consider a system uniformly rotating with a given angular velocity. What is its kinetic energy?


� EMBED Equation.2  ���


For a body undergoing both the translational and rotational motion, it may be rigorously shown that the total KE has the form, 





� EMBED Equation.2  ���





Here, � EMBED Equation.2  ��� is the (linear) velocity of the CM, � EMBED Equation.2  ��� is the moment of inertia about an axis through CM, and M is the total mass of the body.








Example: Consider a cylinder of radius r rolling down an incline without slipping. (a) After vertical drop of h, what is its speed? (b) For a 26.9O incline, what is its acceleration?
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Solution: Similar to what we had for a bicycle, there is a relation between the translational and rotational velocities, 


� EMBED Equation.2  ���.


(a) We will use the energy conservation,


� EMBED Equation.2  ���


Compare: For a non-rotating body,


 � EMBED Equation.2  ���. Why?


(b) We rewrite the relation between v and h  as 


� EMBED Equation.2  ���,


where l is the distance traveled. Comparing this with the formulas for uniformly-accelerated motion, we find the acceleration:


� EMBED Equation.2  ���.


For comparison, for a sliding (non-rotating) body the acceleration is


� EMBED Equation.2  ���.








�
� EMBED Package  ���Double-click to activate the demonstration package (requires Interactive Physics II by Knowledge Revolution)�
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� EMBED Equation.2  ���
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� EMBED Equation.2  ���
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� EMBED Equation.2  ���
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� EMBED Equation.2  ���
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� EMBED Equation.2  ���
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� EMBED Equation.2  ���
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axis





Parallel component of the force is compensated by the reaction of the axis and produces no action





Parallel component of the force is compensated by the reaction of the axis and produces no action
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Load weight F0





0.05 m





0.45 m





Length from the joint to biceps is 5 cm, from joint to arm 45 cm.





Force exerted by biceps
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Initial state





Final state





Double-click to activate the package
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Final state





Double-click the icon to activate the package. Interactive Physics II by Knowledge Revolution  should be installed on your computer.
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