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1. Linear Momentum and the 2nd Law


Linear momentum for one particle is defined by the relation 


� EMBED Equation.2  ���





The second Newton’s Law, � EMBED Equation.2  ��� can be written in terms of momentum as � EMBED Equation.2  ���, or





� EMBED Equation.2  ���,


or, the rate of change of momentum is equal to the net (total) force.


The quantity � EMBED Equation.2  ��� is often called impulse. The change of momentum is equal to impulse.
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�xample 1: Water leaves the firefighters’ hose at the rate of 35 kg/s with the speed of 50 m/s. Find the force exerted by the hose on the firefighters. 






































From Pythagorean theorem, we find 


� EMBED Equation.2  ���


Consider time interval of, say, 1 s. The mass of the water that changed speed is m=35 kg. From the Second Law in the momentum formulation we obtain


� EMBED Equation.2  ���.


Discussion: The force that we have calculated is exerted on water. The reaction force is applied to the hose and, ultimately, to the firefighters who keep it. This force is about four times weight of an average person. Support your firefighters!






































Rocket propulsion
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Solution: In 1 s of the rocket operation, 3500 kg of the fuel matter is accelerated from the rest (in the rocket’s tanks) to the speed of 700 m/s. The lifting force is 


� EMBED Equation.2  ���








2. Conservation of Momentum
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� EMBED Equation.2  ���


Thus, the total momentum � EMBED Equation.2  ���of a composite system obeys the same law as one particle - the Second Newton’s Law in the momentum formulation


� EMBED Equation.2  ���.


In the absence of the net (external) force, the momentum is conserved


� EMBED Equation.2  ���.
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�xample: A 4-kg rifle at rest fires a 9-g bullet at the muzzle speed of 400 m/s. Find the recoil velocity of the rifle.























Solution: We will equate momentum of the system in the initial and final states:


� EMBED Equation.2  ���


Discussion: The recoil velocity of the rifle is so much smaller than the velocity of the bullet, because the rifle has much greater mass than the bullet.








3. Momentum Conservation in Collisions





If the external forces during a collision are much less than the internal forces, than the momentum in the collision is conserved, i.e.





Momentum before=Momentum after, or


� EMBED Equation.2  ���.


For two bodies, 


� EMBED Equation.2  ���





Because the internal forces are not necessarily conservative (e.g., friction or inelastic deformation), the mechanical energy is not necessarily conserved by the collision. 


If the energy is still conserved (only elastic deformations and no friction is present), such a collision is called elastic, otherwise it is called inelastic.


Actually, inelastic collisions are most common.





Consider fusion of two objects in one dimension. The fusion is also called a completely inelastic collision.





�


�











We equate the momenta before and after the collision:


� EMBED Equation.2  ���.


From this, we find the final velocity 


� EMBED Equation.2  ���.


Later, we will find that this is indeed, the center-of-mass velocity.





Change of energy in the fusion:


� EMBED Equation.2  ���


Thus the collision is always inelastic (the change of energy is negative) unless the velocities of the two objects are (almost) equal.





Example 1: Consider completely inelastic collision between a 1500-kg car moving at 100 km/h and a 20,000-kg truck moving oppositely at 90 km/h.


Solution: We know that v1=100 km/h=28 m/s and v2= -90 km/h= -25 m/s. 


The final velocity is 


�� EMBED Equation.2  ���


The change of velocity for the car is


� EMBED Equation.2  ���.


The change for a truck is


� EMBED Equation.2  ���.


Certainly, the truck’s driver has much better chance to survive the collision.


�
� EMBED Package  ���Double-click to activate the demonstration package (requires Interactive Physics II by Knowledge Revolution)�



�


Example 2: Find what percentage of the energy of a 9-g bullet is dissipated (transformed into the energy of destruction and thermal energy) during its inelastic collision with a 70-kg body initially at rest.


Solution is straightforward. The ratio of the dissipated energy to the full (initial) energy is


� EMBED Equation.2  ���


Conclusion: almost all energy (99.99%) of the bullet goes into the destruction -- this is why the firearms are so deadly.


Additionally, find the final velocity of the body, if the velocity of the bullet is 400 m/s.


Solution:


� EMBED Equation.2  ���


Discussion: All the movie pictures in which a bad guy gets a shot and consequently flies out of the window in a rain of glass are a gross exaggeration.





�Ballistic pendulum





























Given h, find the initial velocity of the bullet v1.























Solution:


We will first find the velocity of the bob immediately after the impact (the bob is still at the initial position),


� EMBED Word.Picture.6  ���


� EMBED Equation.2  ���.


Then we will find the initial energy of the aggregate ‘bullet+bob’,


� EMBED Equation.2  ���.


We choose that at this moment the potential energy is zero. Finally, we equate this energy to the potential energy at the final point, 


� EMBED Equation.2  ���.


From this expression, we find the required, initial velocity of the bullet,


� EMBED Equation.2  ���.


4. Elastic Collisions (Scattering)


�We will consider elastic collisions in one dimension (along a straight line). The general problem is:




















If we know the initial velocities, find the final velocities. This problem is difficult to solve generally. Consider some cases.


We use conservation of both momentum and energy,


� EMBED Equation.2  ���


We can rewrite the equations identically,


� EMBED Equation.2  ���


Another identical transformation yields,


� EMBED Equation.2  ���





Dividing the lower equation by the upper side by side, we get 


� EMBED Equation.2  ���


Thus, the relative velocity of the particle is conserved, but the particles change places, 1<--> 2. This is a general result for elastic collisions.








Consider now the case of equal masses. 


The equations simplify,


� EMBED Equation.2  ���.


Let us square the first equation and subtract the second,


� EMBED Equation.2  ���


Thus, in the case of equal masses, the product of velocities is not changed by an elastic collision.


Consider now the two exactly conserving quantities together, � EMBED Equation.2  ���.


These are two equations with two unknown quantities, � EMBED Equation.2  ���. These equations completely determine the unknowns. 


There are two evident solutions,	� EMBED Equation.2  ���	(� SEQ Eqno \# "0" \* MERGEFORMAT �1�)


which means the exchange of velocities between particles, and	� EMBED Equation.2  ���	(� SEQ Eqno \# "0" \* MERGEFORMAT �2�)


meaning the complete miss.


�


Case (1): exchange of velocities:




















�
� EMBED Package  ���Double-click to activate the demonstration package (requires Interactive Physics II by Knowledge Revolution)�



�








Case (2): complete miss:


��

















“Laboratory-system” collisions


are the collisions where one of the particles is at rest:


�




















Conservation of energy and momentum,


� EMBED Equation.2  ���


in this case gives


� EMBED Equation.2  ���


This is a quadratic system of two equations for two unknown quantities, � EMBED Equation.2  ���. It can be solved exactly, and it has exactly two solutions, a nontrivial solution, describing the actual collision,


	� EMBED Equation.2  ���,	(1)


and a trivial solution, describing the complete miss,


	� EMBED Equation.2  ���.	(2)


For the case of equal masses, we have again the exchange of velocities:
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Example 3: Consider a perfectly elastic collision between a 1500-kg car moving at 100 km/h and a parked 20,000-kg truck.


Solution: We know that v1=100 km/h=28 m/s and v2=0.


The final velocity of the car is 


� EMBED Equation.2  ���.


Thus the change of velocity for the car in the collision is -82 km/h-100 km/h=-182 km/h, which gives a very little chance of survival, if any.


The final velocity of the truck is 


� EMBED Equation.2  ���.


Thus, the truck’s driver has a very good chance of survival.


�
� EMBED Package  ���Double-click to activate the demonstration package (requires Interactive Physics II by Knowledge Revolution)�
�














Example 4: For comparison, consider a completely inelastic collision between a 1500-kg car moving at 100 km/h and a parked 20,000-kg truck.


Solution: We know that v1=100 km/h=28 m/s and v2=0. The final velocity of the car and truck is 


� EMBED Equation.2  ���Thus, the change of velocity for the car is -93 km/h, and for the truck is only 7 km/h. Importantly, the absolute change of velocity for a car (93 km/h) is much less than in the perfectly elastic case (182 km/h). A car should crumple for safety!





























Three-Dimensional Collisions





�
� EMBED Package  ���Double-click to activate the demonstration package (requires Interactive Physics II by Knowledge Revolution)�
Equal-mass objects are scattered at 90O to each other (if no rotation is important).


�




















Rotating balls may be scattered at angles different from the right angle


�




















5. Center of Mass


It can be shown that general motion of an extended body can be considered as a translational motion of its center of mass (CM) superimposed on its rotational, vibrational, etc., motion about its CM. 


What is CM? It is defined as a point with coordinates


� EMBED Equation.2  ���.





Example 1: The distance between the carbon atom (m=12 u) and oxygen atom (m=16 u) in a CO molecule is � EMBED Equation.2  ���m. How far the carbon atom is from the CM of the molecule?


�Solution: The molecule has the form




















� EMBED Equation.2  ���








Center of mass of a continuous object


A continuous object can be considered as composed of some parts, which, in turn, can be viewed as point masses to calculate the position of the CM.





Example 2: We have two uniform circular plates made of the same material, the second is lying on the first. We know that


�� EMBED Equation.2  ���.


Find position of the CM.




















Solution: From geometric similarity considerations,


� EMBED Equation.2  ���





� EMBED Equation.2  ���


Center of mass and translational motion


What is displacement of the CM of a body?


� EMBED Equation.2  ���.





Velocity of the CM is


� EMBED Equation.2  ���,


and similarly for x, y, and z. Thus, the total momentum is simply expressed in terms of the center-of-mass velocity vCM and the total mass M of the system, 


� EMBED Equation.2  ���.


The change of momentum is 


� EMBED Equation.2  ���


Correspondingly the Second Newton’s Law is 


� EMBED Equation.2  ���.


Consequently, the CM of any object with the total mass M moves as a point of mass M, compelled by the net external force. The Second Law in the acceleration formulation is reproduced for an extended body!


�
� EMBED Package  ���Double-click to activate the demonstration package (requires Interactive Physics II by Knowledge Revolution)�
�





























Three-Dimensional Scattering


Objects of equal masses are scattered at the right angle (no friction, no rotation involved):


�
� EMBED Package  ���Double-click to activate the demonstration package (requires Interactive Physics II by Knowledge Revolution)�



�




















In contrast, if friction and rotation are involved, the scattering angle may be different from 90O:


�
� EMBED Package  ���Double-click to activate the demonstration package (requires Interactive Physics II by Knowledge Revolution)�



�





� EMBED Equation.2  ���





� EMBED Equation.2  ���





� EMBED Equation.2  ���





Hose





Water





Reaction force 


exerted on the hose





Force exerted on water





� EMBED Equation.2  ���





Find the lifting force of the rocket engine.








External forces





Internal forces











Final state











Initial state





vb=400 m/s





vr=?





m1





m2





m2





m1





� EMBED Equation.2  ���





� EMBED Equation.2  ���





After





Before





� EMBED Equation.2  ���





M





m





v1











h





� EMBED Equation.2  ���





After the collision





Before the collision





� EMBED Equation.2  ���





� EMBED Equation.2  ���





� EMBED Equation.2  ���





� EMBED Equation.2  ���





After the collision





Before the collision





� EMBED Equation.2  ���





� EMBED Equation.2  ���





� EMBED Equation.2  ���





� EMBED Equation.2  ���





After the “collision”





Before the “collision”





� EMBED Equation.2  ���





� EMBED Equation.2  ���





� EMBED Equation.2  ���





� EMBED Equation.2  ���





After the collision





Before the collision





� EMBED Equation.2  ���





� EMBED Equation.2  ���





� EMBED Equation.2  ���





� EMBED Equation.2  ���





C, x=0





x





O, x=� EMBED Equation.2  ���m
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