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1.Simple Harmonic Oscillations (SHO) 


Oscillation (a.k.a. vibration) is a periodic motion, that is a motion that repeats itself, force and back. Simple harmonic oscillation is periodic displacements of body attached to a spring from its equilibrium position.


SHO is induced by a restoring force of a spring,
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2 Energy of the SHO.
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Consider an extreme point, � EMBED Equation.2  ���. At this point � EMBED Equation.2  ���and � EMBED Equation.2  ���. 


On the other hand, at the equilibrium point � EMBED Equation.2  ��� and the velocity is maximum, � EMBED Equation.2  ���.


Using the fact that energy is conserved, we equate 


� EMBED Equation.2  ���.


From this we obtain
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Now, we are using the conservation of energy for a “generic” position of the oscillator,


�� EMBED Equation.2  ���.


Substituting � EMBED Equation.2  ���, we finally obtain, the velocity of the oscillator at an arbitrary position,


� EMBED Equation.2  ���.


This is the required relation between the coordinate and the velocity of an oscillator.





Example: Consider the oscillator of our numerical experiment, � EMBED Equation.2  ���, � EMBED Equation.2  ���. The initial velocity is the maximum velocity, � EMBED Equation.2  ���. 


Find: (a) the amplitude, (b) energy, (c) the velocity when the oscillator is 0.3 m from the equilibrium, and (d) the maximum acceleration.


Solution: 


(a) We can find the amplitude using the familiar relation, � EMBED Equation.2  ���, or, 
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(b) The total energy of the oscillator we find from at the initial point,
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(c) The velocity when the oscillator is 0.3 m from the equilibrium we find from the relation obtained
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(d) The maximum acceleration is at the point of maximum deviation,
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We calculate the x component of the velocity,


� EMBED Equation.2  ���. On the other hand, geometrically,


� EMBED Equation.2  ���.


Thus, we obtain for velocity


� EMBED Equation.2  ���.


Interestingly, this equation is exactly the same as for SHO. Because velocity is the same, coordinate will be the same, and the period of motion will be the same! Thus, we obtain for the period � EMBED Equation.2  ���. Substituting � EMBED Equation.2  ���, we obtain


� EMBED Equation.2  ���.


Remarkably, the period (frequency) of motion does not depend on the amplitude! This is why oscillators (pendulums) are used in clocks to measure time.





Example: Find the period of motion for our numerical experiment. 


Solution: We simply substitute the numerical values, � EMBED Equation.2  ���. Correspondingly, the frequency is � EMBED Equation.2  ���, exactly as the numerical simulation has shown.








Now, we are going to find the position (coordinate) of SHO. 
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 � EMBED Equation.2  ���. We substitute � EMBED Equation.2  ��� and obtain


 � EMBED Equation.2  ���,


where � EMBED Equation.2  ��� is angular velocity of rotation, called angular frequency of the oscillation. Comparing to the oscillation frequency � EMBED Equation.2  ���, we find that � EMBED Equation.2  ���. The position of the oscillator is


� EMBED Equation.2  ���.





To find the velocity, we remember that 
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Finally, the acceleration of a SHO can be found from the Second Law,
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Thus, � EMBED Equation.2  ���. This looks like harmonic force � EMBED Equation.2  ���, where � EMBED Equation.2  ���. However, this force is not parallel to x. Nevertheless, it is almost parallel for small angles. 


Thus for � EMBED Equation.2  ��� small,


� EMBED Equation.2  ���Remarkably, the period does not depend on the mass!
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Example: Find the period of the pendulum in our numerical experiment, L=2.0 m. 


Solution is simple,


 � EMBED Equation.2  ���.























Resonance�



Equal frequencies:
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Unequal frequencies:
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Restoring force
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