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Mechanisms of high-harmonic generation from crystals are described by treating the electric field of a
laser as a quasistatic strong field. Under the quasistatic electric field, electrons in periodic potentials form
dressed states, known as Wannier-Stark states. The energy differences between the dressed states determine
the frequencies of the radiation. The radiation yield is determined by the magnitudes of the interband and
intraband current matrix elements between the dressed states. The generation of attosecond pulses from
solids is predicted. Ramifications for strong-field physics are discussed.
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Advances in intense pulsed lasers have opened up an
avenue to field-induced nonperturbative nonlinear optical
phenomena, such as high-harmonic generation (HHG)
and attosecond pulse generation [1,2]. The scope of these
strong-field phenomena has beenmainly focused on gaseous
media, and was extended to solids recently [3–15]. In
particular, HHG from wide-band-gap semiconductors under
illumination of low-frequency laser light has been reported
[3,4], which has opened the door to extreme wavelength
conversion employing condensed-matter materials.
The nonperturbative character of the HHG manifests

itself as plateau structures in its energy spectrum, which
provide insights into the electronic dynamics on attosecond
time scales. The HHG process of gases is well described
by the three-step model: field ionization, acceleration,
and recollision [16,17]. The cutoff energy of the resultant
radiation plateau is the sum of the ionization potential and
the maximal kinetic energy gained by the electron during
excursion, and thus scales quadratically with the laser field
amplitude. In the case of solids, however, this enlightening
three-step model is not applicable, as is evidenced by the
experimentally observed linear scaling of the cutoff ener-
gies to the field [3,4].
To account for the mechanism of HHG from solids,

several models have been proposed. (1) For example,
Ghimire et al. considered the intraband current as the
source of HHG [3,18]. Because of the nonparabolicity of
the conduction-band energy, the intraband current contains
harmonics of the Bloch frequency ΩB ≡ qaE=ℏ, where q
is the unit charge, a is the lattice constant of the crystal, and
E is the electric field amplitude of the laser. This model
explains the linear scaling of the cutoff energy with the
laser field amplitude, but cannot treat the additional offset
observed in the cutoff energy [3,4]. (2) Another approach is
to consider the interband polarization as the source [6–8].

In this model, highest-energy photons are emitted at the top
of the bands; this gives the upper limit of the HHG energy,
but does not explain the linear scaling.
These currently existing models cannot fully explain

the experimentally observed scaling of the cutoff energy
because interband and intraband light-matter interactions
are considered separately. When the laser field is strong and
the interaction is nonperturbative, the interplay between the
interband and intraband contributions cannot be neglected,
in analogue to breakdown of the rotating wave approxi-
mation for carrier-wave Rabi flopping in two-level systems
[19–21]. The importance of avoiding this artificial separa-
tion for a proper prediction of the HHG radiation frequency
is found in numerical simulations based on the integration
of the time-dependent Schrödinger equation (TDSE)
[7,8,13–15]. The validity of such a numerical approach
is confirmed by its agreement with experiments [4]. Various
proposals have been made based on the TDSE, for example
to isolate an attosecond pulse by using two-color laser
pulses [22]. These numerical simulations, however, require
further interpretation of the results, and a more insightful
way of determining the HHG cutoff energy has been
eagerly demanded [6].
In this study, we propose a semianalytical model to

gain insight into the physical processes involved in the
generation of HHG radiation in solids, and to understand
the experimentally observed cutoff energies. The essential
point of our model is to consider electronic states dressed
with a quasistatic electric field via both interband and
intraband couplings, which are known as Wannier-Stark
(WS) localized states [10,11,23]. The energy spectrum
and the wave functions of these dressed states determine
the radiation energy and yield of the HHG. We show that
the highest energy photons from solids are emitted
when the laser field peaks, which suggests participation
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of the adiabatic WS states. Based on this understanding,
we predict the possibility of the generation of isolated
attosecond pulses from solids.
Electrons in a periodic lattice interact with the optical

electric field through interband and intraband couplings,
which are found in the Schrödinger equation for semi-
conductors [4,13,21]:

HðtÞ ¼
Z 2π

a

0

dk

�X
λ

ελðkÞâ†λ;kâλ;k

− EðtÞ
�X

λ;λ0
μλλ0 ðkÞâ†λ;kâλ0;k þ iq

X
λ

â†λ;k∇kâλ;k

��
:

ð1Þ
Here âλ;k is the annihilation operator of an electron with a
wave number k, the indices λ and λ0 label the bands. ελðkÞ is
the electron energy of band λ at k, μλλ0 ðkÞ is the interband
dipole moment between the bands λ and λ0 at k. The three
terms describe the energies of the band electrons, the
interband polarization, and the intraband polarization,
respectively.
Higher-harmonic radiation oscillates much faster than

the laser field. Also, we assume the driving-laser frequency
to be much smaller than the band gap divided by ℏ so
that the material is transparent to the laser. Therefore, we
assume that the laser electric field is quasistatic, EðtÞ ¼ E0,
and watch the electronic states under this assumption. The
last term in Eq. (1) results in the intraband acceleration of
the electrons: KðtÞ ¼ k0 þ ðqE=ℏÞt, where k0 is the initial
wave number [Fig. 1(a)]. The electron-electron interaction
works as pure dephasing at the time scale of tens of
femtoseconds [21], so the dynamics of the electrons with
different k0 can be independently calculated. We take an
interaction-representation picture for k so that k ¼ KðtÞ
changes in time following this intraband acceleration, so
the last term in Eq. (1) is eliminated. The cost we pay is that
the Hamiltonian now depends on time even though we
assumed a static electric field. This temporal dependence
is periodic in time; hence, we can employ the Floquet
theorem to obtain the solutions.
We illustrate how to apply the Floquet method using a

one-dimensional two-band model, for example, conduction
band and valence band (λ ¼ C or V, respectively). Note that
this procedure is applicable to any number of bands. In
matrix form, the Hamiltonian is

HðtÞ ¼
�

εV(KðtÞ) −E0μ(KðtÞ)
−E0μ

�(KðtÞ) εC(KðtÞ)

�
: ð2Þ

The conduction- and valence-band energies and the dipole
coupling energies are periodic functions of k. Under a static
field, this periodicity is imprinted onto temporal periodicity
because KðtÞ ¼ k0 þ ðqE=ℏÞt is linear to t. Therefore,
the Hamiltonian is also periodic in time, and can be
decomposed into a Fourier series as

HðtÞ ¼
X
n

e−inΩBt ~Hn; ~Hn ≡
�

~εnV −E0 ~μ
n

−E0 ~μ
n� ~εnC

�
;

ð3Þ

where ΩB ¼ aeE0=ℏ is the frequency of the periodicity,
which is the Bloch frequency. ~μn and ~εnλ are the Fourier
coefficients of μ(KðtÞ) and ελ(KðtÞ), respectively.
We can now apply the Floquet theorem to this system.

The problem of finding solutions of the original
Schrödinger equation [Eq. (2)] is translated into solving
the following eigenvalue problem [24]:

P
ν0;n0 ðHn−n0

νν0 −
nℏΩBδνν0δ

nn0 Þjϕn0
ν0 i ¼ ϵnν jϕn

νi. ϵnν is a quasienergy, and the
eigenstate jϕn

νi is a WS state [25]. Here the indices ν and ν0
label different Floquet quasienergy series. Within one
series, the quasienergies are equidistant: ϵnν − ϵn

0
ν ¼

ℏðn − n0ÞΩB. The number of the series is the same as

FIG. 1 (color). (a) Schematic of the dynamics of electrons in
the valence and conduction bands. The electron experiences
both interband transition and the intraband acceleration.
(b) Coordinate-space representation of the system under a static
electric field. (c) Quasienergy spectra as functions of the
quasistatic electric field. (d) Energy spectra of the radiation as
functions of the quasistatic electric field. The color shows the
intensity amplitude of the current matrix elements. (e) Numeri-
cally obtained current density spectra as functions of the peak
electric field of the incident laser pulse. (f) Integrated values of
the intensity amplitude of the current matrix elements in (d) over
the same laser waveform as in (e).

PRL 113, 213901 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 NOVEMBER 2014

213901-2



the number of the original electronic bands. The solutions
of the original Schrödinger equation are constructed from
the quasienergy eigenstates of the Floquet Hamiltonian:

jΨðtÞi ¼
X
ν

X
n

Cνe−iðϵ
n
ν=ℏÞtjϕn

νi: ð4Þ

The linear-combination coefficients Cν are determined
by the initial electron states and the prior temporal
evolution of the field, following the Landau-Zener tunnel-
ing probability [5,10,26,27].
It is interesting to see that the above procedure of the

Floquet method can be mapped into a coordinate-space
picture via a standard tight-binding procedure [Fig. 1(b)].
Consider atomic Wannier states jϕn

λi in a lattice, where n
labels the site position and λ is the band index. ~εnλ
corresponds to the coupling to the nth neighbor site.
Diagonalization of the Hamiltonian without field gives the
standard band structure. An external electric field provides
two additional effects. The first is the position (x)-dependent
potential energy shift, −qxE. The second is the interband
mixing between the nth neighbors via dipole coupling ~μn.
Diagonalization of this coordinate-space Hamiltonian gives
the same energy spectrum as the Floquet quasienergy
spectrum.
Figure 1(c) shows the quasienergy spectra as a function

of the quasistatic field amplitude. Parameters are chosen to
simulate a typical wide-band-gap semiconductor: a band
offsetΔ≡ ~ε0C − ~ε0V of 6 eV, a conduction-band width 2~ε1C ¼
2~ε−1C of 3 eV, a valence-band width 2~ε1V ¼ 2~ε−1V of 2 eV, and
an intra-atomic dipole moment ~μ0 of 0.1je−j nm. The other
parameters (~εnλ for jnj ≥ 2 and ~μn for jnj ≥ 1) are zero. For
the diagonalization, we introduced a cutoff in n as jnj ≤ 7.
Increasing the cutoff does not change the quasienergies of
the n ¼ 0 states for ΩB > Δ (i.e., jEj > Δ=qa) because the
mixing between wave functions having a large difference
in n is negligibly small. In the coordinate space picture
[Fig. 1(b)], this corresponds to neglecting the interatomic
coupling if they are separated by na, which is larger than
the WS localization length [10].
Next, we calculate the current. The intraband current

operator is obtained from the electron group velocity as
Jλλ0 ðtÞ ¼ ðe=ℏÞð∂ελðkÞ=∂kÞjk¼KðtÞδλλ0 . The interband cur-
rent is given as the temporal derivative of the interband
polarization Pλλ0 ðtÞ ¼ μλλ0(KðtÞ). Both are periodic in time,
and thus can be described using their Floquet matrix
elements. We calculate the expectation value of the total
current for the dressed electronic state in Eq. (4):

d
dt

hPðtÞi þ hJðtÞi

¼
X
ν;ν0

X
n;n0

C�
νCν0e

iðϵnν−ϵn0ν0 =ℏÞt

×

�
hϕn

ν jPFjϕn0
ν0 i

iðϵnν − ϵn
0

ν0 Þ
ℏ

þ hϕn
ν jJFjϕn0

ν0 i
�
: ð5Þ

Here, the Floquet matrix PF is defined as hψn
λ jPFjψn0

λ0 i≡
hψλj ~Pðn−n0Þjψλ0 i, where jψn

λi≡ expð−inΩBtÞjψλi are the
bases in the extended Hilbert space and jψλi are the bases
of the original equation [Eq. (2)]. JF is defined similarly.
See the Supplemental Material [28] for details.
The oscillating total current in Eq. (5) works as the

source of radiation. The difference between quasienergies,
εnν − εn

0
ν0 , gives the photon energy of the radiation. The

radiation yield is determined by the terms in parentheses in
Eq. (5), i.e., the matrix element of the total current operator
between different quasienergy states. Figure 1(d) shows the
energy spectra of the current, with the intensity amplitudes
of the current matrix elements encoded in color. According
to the quasienergy spectrum, seemingly infinitely high
energy photons can be emitted because the quasienergy
spreads over infinite values. However, this is not the case
because the current matrix elements between different
quasienergy eigenstates steeply drop in logarithmic scale
as the quasienergy difference increases. The coefficients Cν

have a secondary influence to the radiation power because
the population distribution changes within linear scale, as
we will see later. Note that propagation effects modify the
HHG spectra from the current spectra through absorption
and phase mismatch [18].
In the strong-field limit, i.e., ℏΩB > Δ, the quasienergies

are approximated as ϵnð�Þ ≈ nℏΩB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ=2Þ2 þ ðℏΩRÞ2

p
þ

ð~ε0C þ ~ε0VÞ=2. Here ΩR ≡ E~μ0 is the Rabi frequency
between the two Wannier states within a single atomic
site, and the term including ΩR corresponds to the Stark
shift. The difference between two quasienergy states gives
the radiation energy:

ϵnðþÞ − ϵn−Nð−Þ ≈ NℏΩB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ð2ℏΩRÞ2

q
: ð6Þ

When ΩR ≪ Δ, this value converges to NΩB þ Δ. This
means that the cutoff energy is linear in the field amplitude
because a multiple of the Bloch frequency NℏΩB is
included. On top, Δ remains as an offset, which accounts
for the experimentally obtained offset in the cutoff energy
[3,4]. Note that in the carrier-wave Rabi flopping regime
(ΩR ≫ Δ), the cutoff is NΩB þ 2ΩR.
To show the validity of this picture, we compare it with

numerical results [Fig. 1(e)]. The temporal evolution of
the TDSE is obtained with the Crank-Nikolson method
[29]. The valence band is initially fully occupied, while
the conduction band is empty. We calculate the total
current density jðd=dtÞhPðtÞi þ hJðtÞij2. The laser pulse
has a central frequency of 200 THz and a FWHM of
the intensity envelope of 30 fs. We changed the peak
electric field in the simulations, while fixing the wave-
form. Carrier-envelope-phase variation induces negligible
change in HHG spectra for such relatively long pulses.
In comparison, we integrated the radiation yield in
Fig. 1(d) over the laser waveform to estimate the radiation
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spectra [Fig. 1(f)]. Quantitative agreement between the
numerical and the semianalytical results is found. For
example, several cutoff steps in the energy (change in color)
are observed in the two pictures, overlapping each other.
Hence, the semianalytical results are well supported by
numerical simulations. They deviate when jEj < Δ=qa,
because the quasistatic assumption is only valid for stronger
field values. Note that the computation cost for the semi-
analytical method was 3 orders of magnitude smaller than
that of the numerical integration.
So far we have clarified the mechanisms of HHG based

on quasistatic electronic states. This provides us an
opportunity to predict the possibility of the generation of
isolated attosecond pulse(s), whose waveforms can be
controlled by the carrier-envelope phase (CEP) of the
incident laser pulse. Figures 2(a) and (b) show two laser
waveforms having different (0 and π=2) CEPs, which
correspond to cosine and sine waveforms, respectively.
We numerically simulate the temporal evolution of the

TDSE under these laser waveforms, and obtain spectrograms
of the currents [Figs. 2(c) and 2(d)]. These spectrograms
show notable differences: the cosine pulse generates a single
high-energy peak while the sine pulse generates a double
peak. Single or double attosecond pulses can be separated
from the rest of the radiation by introducing high-pass filters
[Figs. 2(a) and 2(b)].
The quasistatic assumption insightfully accounts for the

main features in the spectrograms when jEj > Δ=qa.
Figures 2(e) and 2(f) show the energy and the yield of
the radiation under the quasistatic field approximation,
which well explains the photon energies of the radiation
peaks in Figs. 2(c) and 2(d). Note that there remains a
considerable radiation at low energies in the spectrogram
after the laser pulse passes. This cannot be treated in the
quasistatic field model because it is applicable when
jEj > Δ=qa.
One limitation of the present approach is that the

coefficients Cν in Eq. (4) cannot be determined with the
present value of the field alone, because they are deter-
mined by the initial conditions and depend on how the field
evolved. So, it is worth considering how these coefficients
evolve in the numerical simulations. The speed of the
change in the field value determines the tunneling rate
when the field value goes through anticrossings in the
quasienergy spectra. For example, the last anticrossing in
Fig. 1(c) is ∼0.5 eV wide (i.e., the one for the largest field
amplitude), which is comparable to the frequency of the
laser field, 0.83 eV=ℏ. Therefore, when the field value goes
across the anticrossings, electrons experience intermediate
transitions between adiabatic and diabatic ones through
Landau-Zener tunneling [5,10,26,27]. This is found in
Figs. 2(g) and 2(h), showing the populations of an upper
energy Wannier state. This temporal evolution of the
populations accounts for the more detailed features in
the HHG spectrograms. For example, the two high-energy
pulses in Fig. 2(d) have different intensities, and this
difference reflects the difference in upper-level population
in Fig. 2(h). The evolution of the upper-state population is
important to understand other strong-field phenomena,
such as laser-field induced currents in dielectrics [5].
The present picture can bridge the gap between these
intriguing phenomena.
In this Letter, we treat a one-dimensional model because

of its universal and heuristic insight. In particular, Eq. (6)
explains why the cutoff energy scales linearly to the field
amplitude with an offset. The present method is fundamen-
tally applicable to the three-dimensional (3D) models by
means of many-mode Floquet theory [30]. However, a 3D
model cannot be equally universal because there are many
crystallographic classes; the direction of the field with
respect to the crystallographic lattice is another important
factor [4,8]. Therefore, the 3D computations should be done
for specific crystals and optical polarizations. These exten-
sions to higher dimensions will be published elsewhere.

FIG. 2 (color). Prediction of the possible generation of an
attosecond pulse. The incident laser waveforms having (a) cosine
and (b) sine waveforms are plotted as the red curves, while their
envelopes (green curves) are identical. The blue shaded areas
show the power of the HHG through high-pass filters, having
cutoff energies at (a) 40 eV and (b) 38 eV. (c),(d) Numerically
obtained HHG spectrograms. The window function is a Gaussian
having a FWHM of 0.67 fs, i.e., 6.2 eV in energy, which broadens
the spectrograms. (e),(f) Spectra of the total current matrix
elements as functions of time. The color indicates the intensity
amplitude of the matrix elements. (g),(h) Temporal evolution
of the upper-level population. The shaded areas indicate
jℏΩBj > Δ, indicating the field amplitude exceeds the last
anticrossing in Fig. 1(b).
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To summarize, the HHG radiation mechanism in solids
is described as radiation from localized WS states in the
strong-field regime, jEj > Δ=qa. The differences of the
quasienergies of the WS states determine the radiation
energies. The current matrix elements between different
quasienergy states determine the radiation yields. This
mechanism is analogous to the one employed in the
quantum cascade laser, where the minibands are formed
in semiconductor superlattices under a static field, and the
radiation frequency corresponds to the energy difference
between minibands [31,32]. In this sense, HHG in solids
can be considered as a quantum-cascade emission at
extreme ultraviolet frequencies, where high-energy carriers
are coherently injected through Landau-Zener tunneling.
Highest energy radiation is emitted when the incident field
peaks. This greatly differs from the atomic case, where
the recollision event of the electrons with the highest
kinetic energy does not happen at the time when the laser
field peaks.
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