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Graphene superlattices in strong circularly polarized fields:
Chirality, Berry phase, and attosecond dynamics
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We propose and theoretically explore states of graphene superlattices with relaxed P and T symmetries created
by strong circularly polarized ultrashort pulses. The conduction-band electron distribution in the reciprocal space
forms an interferogram with discontinuities related to topological (Berry) fluxes at the Dirac points. This can be
studied using time- and angle-resolved photoemission spectroscopy (TR-ARPES). Our findings hold promise for
control and observation of ultrafast electron dynamics in topological solids and may be applied to petahertz-scale
information processing.
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I. INTRODUCTION

Topological properties of quantum-mechanical Hilbert
space have had pronounced influence on physics as a whole
and condensed matter physics in particular [1–4]. Nontrivial
topological properties of graphene in the reciprocal k-space are
due to the presence of nonzero Berry curvature �(k), which
is a geometric counterpart of a magnetic field localized at the
Dirac points [4,5]. The flux of � at the K or K ′ points is
equal to ±π , correspondingly. The Berry flux is a topological
counterpart of the Ehrenberg-Siday-Bohm-Aharonov (ESBA)
phase [6–8] caused by a localized magnetic field. The total
flux integrated over all the Dirac points is zero, corresponding
to the zero Chern number.

While the Berry phase in the reciprocal space is analogous
to the ESBA phase [7] in the real space, there is a fundamental
difference in the ways it can be observed. In the real space,
an electron wave can diffract around the region containing
magnetic flux and, then, interfere with itself exhibiting fringes
shifted due to the ESBA phase [8]. In sharp contrast, in
the reciprocal space an electron motion in the absence of a
magnetic field is deterministic and diffractionless due to the
Bloch acceleration theorem [9]. In accord with this theorem,
the crystal momentum, kT (t), as a function of time t evolves
as

kT (t) = k0 + e

h̄c
AL(t), AL(t) = −c

∫
FL(t)dt, (1)

where e is unit charge, h̄ is reduced Planck constant, FL(t)
is the optical electric field, AL(t) is the vector potential, and
k0 is the initial crystal wave vector of the electron. After the
pulse ends, the crystal momentum deterministically returns to
its original value, kT (t) → k0, and, consequently, there can be
no interference of an electron wave with itself.

To deal with this fundamental problem, we have proposed
[10] a self-referenced interferometry in the reciprocal space
of graphene. However, because the Berry phase is ±π ,
the corresponding self-referenced interference term carries
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a double phase, ±2π , which is equivalent to zero and not
observable directly. However, one can see an indirect effect of
the Berry phase as an extra interference fringe typical for
a vortex. Direct observation of the reciprocal space Berry
phase is possible by the application of a time-dependent and
inhomogeneous magnetic field [5], or by a circular shaking of
the lattice [11]. However, such experiments are only possible
on quantum lattice models.

Here we propose an approach to directly observe the
Berry phase without a magnetic field. The idea is to use
a superlattice superimposed on graphene to cause electron
diffraction (Bragg reflection) in the reciprocal space. That
causes the self-referenced phase to be different from ±2π

and, therefore, to be observable directly by the reciprocal
space interferometry. In other terms, the diffraction from the
superlattice creates a “which way” quantum-mechanical un-
certainty causing interference of the electron wave with itself
and making the Berry phase directly visible in discontinuities
of the self-referenced interferogram. In a sense, this article
differs from our Ref. [10] analogously to how observation of
the ESBA phase by electron interferometry [8] differed from
the discovery of electron diffraction [12].

We emphasize that we propose to measure the Berry phase
in its direct definition as a phase accumulated by an electron
while adiabatically moving around a Dirac point. In our article,
the phase accumulated by an electron is a combination of the
Berry phase and the dynamic phase. This total phase results in a
unique interference pattern in the conduction-band population
distribution in the reciprocal space, while the presence of the
Berry phase results in singularities (discontinuities) in this
distribution. Note that in the previously published research
[13,14] the Berry phase is not observed directly as the phase
due to adiabatic circling around a Dirac point but through a
unique angular dependence of the interband matrix elements
in graphene related to a specific structure of the electron wave
function defined by the crystallographic symmetry.

Specific properties of graphene as constituted from light
carbon atoms allows one to neglect the spin-orbit interaction,
which is known to be negligibly small (∼1 μeV) in graphene
[15,16]. In contrast, in three-dimensional topological insula-
tors, such as BixSb1−x , Bi2Te3, Sb2Te3, and Bi2Se3, whose
surface states have gapless relativistic energy dispersion laws
similar to graphene [17–24], the spin-orbit interaction is a
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major factor defining their nontrivial topological properties.
Correspondingly, a theory of phenomena at the surfaces in
strong chiral fields will be significantly different to necessarily
take into account the spin-orbit interaction. There will also be
other significant differences related to the presence of the bulk
semiconducting bands and surface-bulk mixing. However, the
underlying idea of the present article that the strong chiral
fields, which compel electrons to move along closed orbits in
the reciprocal space acquiring the Berry phase when the Dirac
point is inside the orbit, will still lead to interference effects
similar to those described in the present article. As it turns out,
such a theory for topological insulators is complicated and
specific enough to require dedicated publications elsewhere;
cf. Ref. [25].

II. MODEL

Assume a graphene monolayer positioned in the xy plane
with the radiation incident in the z direction; see inset in Fig. 1.
A single-oscillation pulse field is defined by its electric field
vector FL = {Fx,Fy,0} where

Fx(t) = −F0e
−u2

(1 − 2u2), Fy(t) = ±2F0ue−u2
, (2)

± signs correspond to opposite circularities, F0 is the ampli-
tude, which is related to the pulse power as P = cF 2

0 /4π , c is
speed of light, u = t/τ , and τ ≈ 1 fs is approximately a quarter
optical oscillation period. Assuming a vacuum wavelength of
1.5 μm, the duration of the pulse is T = 5 fs.

Experimentally, the processes of energy-momentum relax-
ation in the photoexcited CB electron population occur during
times ranging from ∼10–20 fs to ∼200–800 fs [26–33] where
the shortest, ∼10 fs, times are due to ultrafast electron-electron
interactions while longer, ∼1 ps, times are those of phonon-
assisted cooling.

An advantage of ultrafast strong-field processes considered
in this article is that the full cycle of optical excitation is
completed within a few femtoseconds when the electron
relaxation processes do not have enough time to occur.
Therefore, the electron relaxation can be neglected. Note that
effects described below in this paper have a topological origin
and, as characteristic of topological properties, they should be
stable with respect to perturbations.

Consequently, the electron dynamics can be considered
to be coherent, and one can describe it by time dependent
Schrödinger equation (TDSE),

ih̄∂tψ(t) = Ĥ (t)ψ(t). (3)

Here the Hamiltonian is

Ĥ = Ĥ0 + eFL(t) r + �(y), (4)

where Ĥ0 is the field-free Hamiltonian, r = {x,y} is a two-
dimensional (2D) radius vector in the plane of graphene,
and �(y) = V0 cos(Qyy) is an electrostatic potential of the
superlattice, which is periodic in the y direction with period L

and amplitude V0. Here Q is the reciprocal vector of the
supelattice: Q = {0,Qy,0} with Qy = 2π/L. We used real-
istic parameters: L = 10 nm and V0 = 0.05 eV. The dipole
approximation used here is applicable since the unit cell is
much smaller than the radiation wavelength and the electron
velocities are much smaller than the speed of light.

FIG. 1. Real- and reciprocal-space structure of the system and
electron trajectories for a single-oscillation circularly polarized
ultrashort pulse. (a) Electron dispersion of a graphene monolayer
obtained within the tight-binding approximation. Energies of the
highest valence band (π band) and the lowest conduction band
(π∗ band) in the reciprocal space are displayed as functions of wave
vector k = {kx,ky}. The two distinct sets of Dirac points are labeled
K and K ′. (b) Schematic of the proposed structure. A graphene
monolayer is positioned over a superlattice formed by nanowires
with period L in the y direction. Inset: Electric field waveform
F(t) = {Fx(t),Fy(t)} as a function of time t . (c) An illustration of
an electron trajectory (dashed red line) in the reciprocal space, which
starts and ends at a k0 point outside the separatrix and passes close to
a K point without circling around it. The separatrix (solid blue line)
separates the k0 points for those trajectoris that circle around the K

point and those that do not. (d) The same as in panel (c) but for the
k0 point inside the separatrix. (e) Schematic of the reciprocal space
trajectories and transitions caused by the Bragg reflections for the k0

point outside of the separatrix, corresponding to the case of panel (c).
The red line shows an electron trajectory where the solid and dashed
segments correspond to the VB and CB, respectively, as indicated.
The thin dash-dot green and blue lines are the Bragg-shifted replica
of the original trajectory. See other details in the text. (f) The same as
in panel (e) but for the k0 point inside the separatrix, corresponding
to the case of panel (d).

We solve the TDSE (3) using a basis of Houston functions
[34] as has previously been described [10,35,36]. We consider
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graphene at the point of neutrality where the Fermi surface is
at the Dirac points.

The field-free electron Hamiltonian, Ĥ0, is described by the
tight-binding model with nearest neighbor hopping. It is con-
venient to write the TB eigenfunctions in the form of a spinor
(describing pseudospin), whose components correspond to the
amplitudes on the A and B sublattices, respectively, within the
unit cell. Then the resulting Hamiltonian Ĥ0 in the reciprocal
space is a purely off-diagonal 2 × 2 matrix of the form

Ĥ0 =
(

0 γf (k)
γ f ∗(k) 0

)
, (5)

where γ ≈ −3 eV is the nearest-neighbor hopping (or transfer)
constant, and

f (k) = exp

(
i
akx√

3

)
+ 2 exp

(
−i

akx

2
√

3

)
cos

(
aky

2

)
. (6)

The eigenvalues of Hamiltonian Ĥ0 are given by

E(k)

= ±γ |f (k)|

= ±γ

√
1 + 4 cos(aky/2) cos(

√
3akx/2) + 4cos2(aky/2),

(7)

where the + and − signs correspond to the VB and CB,
respectively. The corresponding wave functions of the CB and
VB are

	
(c)
k (r) = eik·r

√
2

(
1

eiϕk

)
= |c,k〉 (8)

and

	
(v)
k (r) = eik·r

√
2

(−1
eiϕk

)
= |v,k〉, (9)

where f (k) = |f (k)|eiϕk . The wave functions, 	k
(c) and 	k

(v),
have two components corresponding to amplitudes to be on
graphene sublattices A and B.

The electric field of the optical pulse generates both
interband and intraband electron quantum transitions. The
interband transitions, VB ↔ CB, cause a redistribution of the
electron population between different bands. The temporal
dynamics for a state with initial crystal momentum k0 is
universally expressed by the Bloch acceleration theorem: the
time-dependent wave vector is given by kT (k0,t) = k0 +
e/h̄

∫ t

−∞ FL(t ′)dt ′. Consequently, the states, which belong
to different bands (VB and CB) but have the same initial
crystal momentum, k0, will have the same crystal momentum,
kT (k0,t), at all moments of time t ; after the pulse ends, the
crystal momentum returns to its initial value k0. The periodic
potential, �(y), couples states within each band with crystal
moments k and k′ = k + nQ, where n = ±1,±2, . . . is the
order of the Bragg reflection from the underlying periodic
array of the metal nanowires.

We use the Houston functions [34]

�
(H )
αk0

(r,t) = 	
(α)
kT (k0,t)

exp

{
− i

h̄

∫ t

−∞
Eα[kT (k0,t

′)] dt ′
}

(10)

as the basis, where α = v (VB) or α = c (CB). Then the
general solution of the time-dependent Schrödinger equation
is expressed in the following form:

	k0 (r,t) =
∑

α=v,c

βαk0 (t)�(H )
αk0

(r,t). (11)

The spatially varying periodic potential, �(y), couples
different states in the y direction within each single band (CB
or VB). As a result, the expansion coefficients in Eq. (11)
satisfy the following system of differential equations:

ih̄
dβ

(c)
k0

dt
= F(t)Zk0 (t)β(v)

k0
+

∞∑
n=−∞

V0�
(c,c)
k0,k0+nQβ

(c)
k0+nQ

+
∞∑

n=−∞
V0�

(c,v)
k0,k0+nQβ

(v)
k0+nQ (12)

and

ih̄
dβ

(v)
k0

dt
= F(t)Z∗

k0
(t)β(c)

k0
+

∞∑
n=−∞

V0�
(v,v)
k0,k0+nQβ

(v)
k0+nQ

+
∞∑

n=−∞
V0�

(v,c)
k0,k0+nQβ

(c)
k0+nQ, (13)

where we have used Fourier transformation to calculate the
contributions of periodic gating.

Assuming potential �(y) to be smooth and weak enough,
we will only take into account the first-order diffraction, n =
±1. This is illustrated by the three coupled trajectories in Fig. 1.
Hence, the above set of equations is simplified to

ih̄
dβ

(c)
k0

dt
= F(t)Zk0 (t)β(v)

k0

+ V0�
(c,c)
+ β

(c)
k0+Qy

+ V0�
(c,v)
+ β

(v)
k0+Qy

+ V0�
(c,c)
− β

(c)
k0−Qy

+ V0�
(c,v)
− β

(v)
k0−Qy

(14)

and

ih̄
dβ

(v)
k0

dt
= F(t)Z∗

k0
(t)β(c)

k0

+ V0�
(v,v)
+ β

(v)
k0+Qy

+ V0�
(v,c)
+ β

(c)
k0+Qy

+ V0�
(v,v)
− β

(v)
k0−Qy

+ V0�
(v,c)
− β

(c)
k0−Qy

, (15)

with �
(m,n)
λ = 〈m,k0|n,k0 ± Qy〉, and indices m and n toggle

between CB (c) and VB (v). Taking Eqs. (8) and (9) into
account, explicit expressions for the coupling terms are

�(c,c) = �(v,v) = cos
(
ϕk0 − ϕk0±Qy

)
/2 (16)

and

�(c,v) = �(v,c)∗ = −i sin
(
ϕk0 − ϕk0±Qy

)
/2. (17)

The vector function, Zk0 (t), is proportional to the in-plane
interband dipole matrix element,

Zk0 (t) = D[kT (k0,t)]

× e− i
h̄

∫ t

−∞ dt ′{Ec[kT (k0,t
′)]−Ev [kT (k0,t

′)]}. (18)
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D(k) = {Dx(k),Dy(k)} is the interband dipole matrix element,
which determines the coupling of the states of the CB and VB
with wave vector k in the external electric field and is equal to

D(k) = 〈c,k|er|v,k〉. (19)

Substituting the CB and VB wave functions (8) and (9) into
Eq. (19), we obtain

Dx(k) = ea

2
√

3

1 + cos
( kya

2

)[
cos

(√
3kxa

2

) − 2 cos
( kya

2

)]
1 + 4 cos

( kya

2

)[
cos

(√
3kxa

2

) + cos
( kya

2

)]
(20)

and

Dy(k) = ea

2

sin
( kya

2

)
sin

(√
3kxa

2

)
1 + 4 cos

( kya

2

)[
cos

(√
3kxa

2

) + cos
( kya

2

)] .

(21)

The system of equations (14)-(15) describes the interband
electron dynamics and determines the mixing of the CB and
the VB states in the electric field of the pulse. Employing
the appropriate initial condition, the time-dependent excitation
probability and the CB population distribution, Nc(k0,t) =
|β(c)

k0
(t)|2, is calculated.

III. MAIN RESULTS

To introduce our idea, we turn to Fig. 1. The band structure,
including the highest valence band (VB) and the lowest
conduction band (CB) and showing the Dirac K and K ′
points, is presented in panel (a). The geometry of the system
in the real space is displayed in panel (b) where a graphene
monolayer is superimposed on a periodic array of nanowires
under electrostatic bias, which periodically modulates the
electron potential. Panel (c) shows an electron trajectory (the
dashed red line) for an isolated monolayer of graphene in
the reciprocal space caused by a single-oscillation circularly
polarized pulse.

Those initial points for which the corresponding trajectories
pass precisely through the Dirac point constitute a curve that
is called separatrix (shown by the solid blue line) [10]. The
separatrix is, in fact, a mirror reflection in the x axis of the
electron trajectory originating at the K point. If the initial
point, k0, is outside of the separatrix, as in panel (c), then the
trajectory does not encircle the Dirac point, and the total Berry
phase accumulated on such a trajectory is zero. In contrast, if
k0 is inside the separatrix, as in panel (d), then the trajectory
does encircle the Dirac point and, consequently, the Berry
phase is ±π for the K and K ′ points, respectively.

Electron trajectories for graphene on a nanowire superlat-
tice are illustrated in Fig. 1(e). The red line shows the actual
electron trajectory in the reciprocal space staring at a crystal
momentum k0, where the solid line corresponds to the electron
in the VB and the dashed line to the electron in the CB. There
are also two additional trajectories shown by the dash-dot
blue and green lines that are obtained from the original (red)
trajectory by shifting it by the superlattice reciprocal vectors,
±Q. The electron moving along the original (red) trajectory
undergoes a Bragg reflection from the superlattice acquiring

the wave vector −Q and jumping to the blue trajectory,
as shown by a vertical arrow. This jump is necessarily
accompanied by a VB → CB transition to avoid the Pauli
blocking due to the VB being fully occupied. Passing by the K

point, the electron undergoes the CB → VB transition and then
another VB → CB transition at the point of the second Bragg
reflection. The electron completes its trajectory at the initial k0

point but in the CB state. Note that, as can be understood, the
transitions “across” (i.e., close to) the K point (between the red
and blue trajectories in this case) are favored by the pseudospin
selection rules [37] in comparison to transitions away from the
K point (between the red and green trajectories, not shown).
We show in panel (e) only such favored transitions, which also
are enhanced due to an increase of the interband dipole matrix
element in the vicinity of the K point.

Analogous arguments are applicable to the alternative case
when the k0 point is inside the separatrix shown in Fig. 1(f).
However, in this case the transitions across the K point, which
are enhanced, are those between the original red trajectory and
the Bragg-shifted green trajectory.

In both cases of the initial crystal moments inside and
outside of the separatrix [Fig. 1(e) and 1(f)], the electron circles
around the K point, but only part of its trajectory. Therefore
the Berry phase, φ, accumulated due to such a passage is
reduced with respect to the complete circling: |φ| < π . (Note
that the jumps due to the Bragg reflections do not contribute
to the Berry phase.) Thus in a self-referenced interferometry,
the phase will be observable since 2|φ| < 2π .

Fundamentally, the CB population induced by the strong
optical field is measurable in the reciprocal space by time-
and angle-resolved photoemission spectroscopy (TR-ARPES)
techniques [14,38–40]. Resolving the electrons originating
from the CB after the pulse ends but before the electron
collisions smear out the distribution, one will register a
self-referenced interferogram. Because 2|φ| < 2π , there will
be discontinuities of the electron distribution on all three
separatrices shown in Figs. 1(e) and 1(f).

Consider first the results obtained for a single-oscillation
circularly polarized optical pulse illustrated in Fig. 1. These
are shown in Fig. 2 where the electron population of the
conduction band, Nc(k,t), is displayed in the reciprocal space
after the end of the excitation pulse whose amplitude is
F0 = 0.5 V/Å. As one can see, the distributions of the
population in the vicinity of the K vs K ′ point are different
because the chirality of the circularly polarized pulse causes
significantly different electron trajectories at the nonequivalent
Dirac points, which are intrinsically chiral themselves. (Note
that for linearly polarized pulses, there is no such a distinction:
the distributions at the K and K ′ points are identical [35].) As
expected [see Figs. 1(e) and 1(f) and the related discussion],
there are discontinuities at the positions of all three separatrices
due to the partial Berry phase 2|φ| < 2π .

To elucidate the phases of the electronic states in the
presence of the topological ±π Berry fluxes at the Dirac points,
we will use the idea of self-referenced interferometry in the
reciprocal space [10]. Consider a pulse with two oscillations
of opposite circularities, as shown in the inset of Fig. 3. The
idea is that during such a pulse, an electron, which moves
in the reciprocal space according to Eq. (1), passes twice,
in the opposite directions, in the vicinity of the Dirac point
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FIG. 2. Conduction band population Nc(k,t) in the reciprocal space in the extended Brillouin zone picture plotted (color coded) as a
function of crystal momentum k at time t at the end of the optical pulse. The pulse has one optical oscillation with a circular polarization,
duration of 5 fs, and amplitude of F0 = 0.5 V/Å, as shown in the inset. Magnified distributions around the two nonequivalent Dirac points, K

and K ′, are shown in the right panels. The separatrix is indicated by the dashed green line superimposed on the population distribution. The
three discontinuities are clearly seen at the separatrix and its replicas Bragg-shifted by ±Q.

where the VB ↔ CB transitions are likely to occur. After the
pulse, the electron crystal momentum returns back to its initial
value k0 irrespectively of the quantum transitions that have
occurred. Consequently, the amplitudes corresponding to the

VB ↔ CB transitions during these two passes interfere. Their
phases differ by a dynamic phase, which is due to the energy
difference between the VB and the CB and leads to formation
of interference fringes, and the Berry phase of 2φ. In pure

FIG. 3. Similar to Fig. 2 but with a two-cycle pulse with opposite circularities (clockwise then counterclockwise) for the two periods.
The field amplitude ratio for the first and second periods is α = 0.75. The expanded images of CB population near the K and K ′ points are
shown on the separate panels to the right. The two separatrices corresponding to the two optical-oscillation periods are indicated by the dashed
green lines.
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graphene, the Berry phase φ = ±π ; this results in the phase
of 2φ = ±2π in the self-referenced interferometry. Thus the
Berry phase does not lead to discontinuities of the electron
population fringes. In our case of a superlattice, |2φ| < 2π ,
and there will be both intensity discontinuities and fringe shifts
on the separatrices and their Bragg images.

The resulting momentum distribution of electrons at the
end of the two-oscillation chiral pulse is shown in Fig. 3. It
is an interferogram with many interference fringes, which is
highly chiral in the vicinity of the Dirac points. There are
bifurcations of fringes clearly present at the interferogram,
which are characteristic of vertices.

Interestingly enough, the number and density of fringes at
the K ′ point is appreciably greater than at the K point. In fact,
in one case, the Berry phase adds to the dynamic phase; in a
pure graphene, the addition of the 2φ = 2π geometric phase
to the self-referenced interferogram causes an appearance of
an extra fringe. In the other case, it subtracts from the dynamic
phase, which causes the disappearance of one fringe. An im-
portant peculiarity of these interferograms is their singularity:
there are both amplitude discontinuities and fringe shifts at the
two separatrices (corresponding to the two optical periods)
and their Bragg replicas. From the more general point of
view, the electron interferograms of the predicted type contain
information on such important topological characteristic as the
Berry curvature in the reciprocal space.

To better visualize the jump in CB population amplitude,
we plot the CB population probability distribution along a
vertical line in reciprocal space; i.e., for a fixed value of qx we

draw Nc(k,t) = |β(c)
k (t)|2 with respect to qy in Fig. 4. Panel (a)

corresponds to the one-cycle pulse, whereas panel (b) is related
to a two-cycle field.

IV. DISCUSSION

Lets us briefly discuss our results and approaches to observe
experimentally the phenomena predicted.

As we have already mentioned above in the introductory
part of this paper, the interferograms of Figs. 2 and 3 can
be read out using TR-ARPES, where an extreme ultraviolet
(XUV) pulse transfers the graphene electrons into the con-
tinuum. These electrons are analyzed in their energy and
tangential momentum. The XUV pulse should have energy
uncertainty less than the VB ↔ CB transition energy, which
is needed to resolve the CB- from VB-originating electrons.
Given that the shortest known electron-momentum relaxation
times in graphene are τe � 10 fs, the corresponding energy
width of the XUV pulse in TR-ARPES should be �E

∼ h̄/τe � 0.1 eV, which will allow one to resolve the CB
electrons for most of the interferograms in Figs. 2 and 3.

The electron-electron collision dynamics will manifest
itself by the smearing-out of the interferograms, which can
also be traced by TR-ARPES with a temporal resolutions of
a few fs and the momentum resolution defined by the ARPES
setup, which is realistically ∼1.5 percent of the Brillouin zone

edge (≈1.6 Å
−1

), that is ≈0.025 Å
−1

[38]; the momentum

resolution can be as high as 0.005 Å
−1

for nano-ARPES
[41]. Such resolutions are more than sufficient to observe the
interference fringes predicted in this paper and their evolution

FIG. 4. Residual CB population plotted as a function of qy with a
fixed value of qx . Panel (a) corresponds to a one-cycle pulse (Fig. 2)

with qx = 0.1 Å
−1

(black) and qx = 0.2 Å
−1

(red). The three jumps
stemming from the nontrivial geometric (Berry) phase are evident.
Panel (b) corresponds to a two-cycle pulse (Fig. 3) with the second
cycle of the opposite rotation and an amplitude ratio of α = 0.75. For

this plot, qx = 0.1 Å
−1

. There are six jumps visible originating from
the nontrivial Berry phase.

caused by electron collisions. Note that TR-ARPES with XUV
energy and requirements close to the energy and momentum
resolution has recently been used to resolve �100 as lifetimes
in highly excited bands of a solid [40].

V. CONCLUSIONS

In conclusion, we have proposed an approach to observe
the direct manifestations of the topological nature of graphene
in the conduction band population distribution. We previously
showed that graphene interacting with an ultrafast circularly
polarized pulse acts as an attosecond interferometer with
self-referencing capabilities [10]. The topological nature of
graphene’s reciprocal space leads to appearance of the ±π

Berry phase for electrons circling around a Dirac point.
However, directly observing such a phase as discontinuities in
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the electron CB distribution in native graphene is impossible
since such distributions are self-referenced interferograms.
Consequently, the relevant phase is twice the Berry phase,
±2π , which eliminates the interferograms’ discontinuities.

In this article we have proposed to use graphene on an
underlying periodic superlattice with a relatively large period.
Due to the electron Bragg reflections from this superlattice,
the circling around the Dirac point becomes incomplete and
the accumulated phase not equal to ±2π , which does lead
to the characteristic discontinuities of the electron CB distri-
bution at the separatrices. This directly visualizes the topo-
logical curvature and Berry fluxes of the graphene reciprocal
space.

From the point of view of fundamental symmetries,
graphene possesses mirror (P) symmetry with respect to
reflection in the xz plane and is invariant with respect to
time reversal (T symmetric). These symmetries imply, in
particular, that the K and K ′ points have the same properties
except their Berry curvatures are opposite, leading to the
opposite Berry phases of ±π . Related to these symmetries
is that the Chern number is zero, and graphene is globally

topologically trivial. In a sharp contrast, the state in which a
strong (non perturbative) ultrashort circularly polarized pulse
leaves graphene does not have either P or T symmetry.
It has the sense of rotation determined by the circular
polarization of the excitation pulse and is fundamentally
optically active. This and similar “topologically charged”
states of matter created by intense, ultrafast, and chiral
optical fields are of significant interest fundamentally and for
applications in petahertz-bandwidth information processing.
The dynamics that we predict is attosecond: over twenty
fringes are formed during a 5 fs duration of the second of
the two pulses. This implies attosecond dynamics: ≈200 as
per fringe.
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