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Interaction of crystalline topological insulator with an ultrashort laser pulse
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We theoretically study the interaction of crystalline topological insulator (CTIs), characterized by surface
quadratic gapless bands, with an ultrashort (few-femtosecond) optical pulse. The electron dynamics in such an
optical pulse is determined by a strong lattice-momentum dependence of the interband dipole coupling, which
is anisotropic and singular at the degeneracy point. The interband mixing induced by the ultrashort pulse results
in a finite conduction band population, the distribution of which in the reciprocal space is correlated with the
profile of the interband dipole matrix elements and has high contrast. The number of such high-contrast regions
depends on the polarization direction of the optical pulse. The ultrashort pulse also causes an electrical current
and a net charge transfer through the system in the direction of the maximum field. These findings open up roots
to ultrafast optical-field control of the CTIs and petahertz-band optoelectronics.
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I. INTRODUCTION

The interaction of ultrashort optical pulses with solids has
been the subject of intensive theoretical and experimental
research [1–19]. The interest in this field is related to a unique
possibility of optical control and optical probing of electron
dynamics in solids at a femtosecond time scale, within which
the optical pulses have just a few oscillations of the optical
field [1–3]. The electric field in such pulses is comparable
to the internal fields acting on electrons in solids. Such a
strong electric field results in highly nonlinear interband and
intaband electron dynamics, strongly modifying both transport
and optical properties of solids during the pulse [14,15,20].

An important characteristic of such electron dynamics is its
reversibility, i.e., the electron system is highly perturbed during
the pulse but returns to its initial state after the pulse. The
degree of reversibility (adiabaticity) of the electron dynamics
depends on the energy dispersion, especially the band gap,
and interband dipole matrix elements, which determine the
strength of the interband coupling in the pulse field. It has been
shown both experimentally and theoretically [15,16,20], that
for dielectrics (fused silica, quartz, and sapphire) the electron
dynamics is highly reversible, which is due to large band gaps
(∼10 eV) of such materials and smooth dependence of the
interband coupling on the wave vector. The reversibility of
electron dynamics in dielectrics can be understood in terms
of the dynamics of passage of anticrossing points of Wannier-
Stark states belonging to different bands [15,16].

The highly irreversible electron dynamics in ultrashort
optical pulses has been predicted theoretically for a two-
dimensional (2D) monolayer graphene, which is a semimetal
with a gapless energy dispersion relation of relativistic Dirac
type in the vicinity of K and K ′-points [21–24]. Such
irreversibility is characterized by large residual, i.e., after
the pulse ends, population of the conduction band (CB). For
graphene, the residual CB population is large and comparable
to the maximum CB population during the pulse [18]. The
origin of the high irreversibility of the electron dynamics in
graphene is due to the absence of the band gap and, also, to
the unique dependence of the interband dipole coupling on
the reciprocal wave vector with a singular behavior of the
dipole coupling at the Dirac points, which ultimately results

in the high residual CB population. In addition to the large
residual CB population, the electron dynamics in graphene
is characterized by high-contrast interference fringes in the
distribution of the CB electrons in the reciprocal space. These
fringes are caused by the quantum-mechanical interference
of the electron passage in the vicinity of the Dirac points,
where interband transitions occur due to the singularity of
interband dipole couplings [18]. Similar electron behavior in
the field of the pulse is expected for three-dimensional (3D)
topological insulators, such as BixSb1−x , Bi2Te3, Sb2Te3, and
Bi2Se3, the surface states of which have gapless relativistic
energy dispersion laws similar to graphene [25–32].

Other graphene-like materials, which have 2D honeycomb
crystal structures and the corresponding relativistic energy
dispersions, are buckled graphene-like materials, such as
silicene and germanene [33–41]. The electron dynamics in this
case strongly depends on the angle of incidence of the optical
pulse and is controlled by the optical field component normal to
the plane [19]. At the normal incidence, the electron dynamics
is highly irreversible and is similar to that in graphene, while
at a large angle of incidence the dynamics becomes partially
reversible with a smaller residual CB population. The normal
field component of the optical pulse both introduces a finite
band gap in the energy dispersion and modifies the interband
dipole matrix elements [19].

Here we consider ultrafast electron dynamics in 2D electron
systems, which, similar to graphene, are semimetals, but
with a quadratic electron-energy dispersion. Such systems are
realized at the surface of crystalline topological insulators
(CTIs) [42], where the surface states are protected by the
time-reversal and discrete rotational symmetries. An example
of such a CTI is a tetragonal crystal with the C4 symmetry,
where the quadratic gapless bands are predicted to occur at the
(001) crystal face [42]. Below we study the electron dynamics
in such materials under ultrashort optical pulses assuming that
the dynamics is coherent and considering low-energy effective
models for the surface state of CTI. The assumption that the
dynamics is coherent is valid as long as the duration of the
pulse, which is ≈4 fs, is less than the characteristic electron
scattering time in these materials, which one would expect on
a time scale longer than 10 fs as in graphene (see the following
paragraph).

2469-9950/2017/95(8)/085438(8) 085438-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.085438


OLIAEI MOTLAGH, APALKOV, AND STOCKMAN PHYSICAL REVIEW B 95, 085438 (2017)

Experimentally, the processes of energy-momentum relax-
ation in the photoexcited CB electron population occur during
times ranging from ∼10-20 fs to ∼200-800 fs [43–50]. The
shortest ∼10 fs, times are due to ultrafast electron-electron
interactions, while longer, ∼1 ps, times are those of phonon-
assisted cooling.

We predict below that the ultrafast interband electron
dynamics in CTIs results in characteristic CB electron dis-
tribution, which is formed due to the quantum-mechanical in-
terference of the excitation events during consecutive crossing
of lines in the reciprocal space of kx = εky (where |ε| � 1 is a
constant) near the degeneracy point (� point) in the reciprocal
space. At these lines, the dipole transitions are strongly
enhanced. A fundamental difference from graphene is a high
degree of anisotropy of the low-energy dispersion, which
results in a strong dependence on the polarization plane of the
optical pulse. In particular, the CB population distribution in
the reciprocal space has a single-peak or double-peak structure
for different polarizations of the optical pulse.

II. MODEL AND MAIN EQUATIONS

We describe surface states of a CTI within an ef-
fective low-energy model determined by the following
Hamiltonian [42]:

H0 = h̄2k2

2m0
+ h̄2

(
k2
x − k2

y

)
2m1

σz + h̄2kxky

2m2
σx, (1)

where σx,σz are Pauli matrices, m0,m1,m2 are effective
masses, and (kx,ky) is a 2D wave vector with magnitude k.
The Hamiltonian, H0, describes the valence band (VB) and
the CB with the following energy dispersion:

Ec,v = h̄2k2

2m0
± h̄2

√(
k2
x − k2

y

2m1

)2

+
(

kxky

2m2

)2

(2)

with corresponding two-component wave functions �
(α)
k (r),

where α = v (valence band) and c (conduction band). The
energy dispersion has quadratic band degeneracy at k = 0
which is anisotropic.

Within the effective Hamiltonian (1), we consider the
interaction of an electron system at the surface of a CTI with an
ultrashort optical pulse, which is parametrized by the following
form:

F (t) = F0e
−u2

(1 − 2u2), (3)

where F0 is the amplitude of the pulse, u = t/τ , and τ is the
pulse length, which is set as τ = 1 fs. We assume that the
pulse is linearly polarized, where the plane of polarization is
characterized by angle θ measured relative to axis x.

The time-dependent Hamiltonian of an electron in the field
of the pulse takes the following form:

H(t) = H0 − eF(t)r, (4)

where F(t) = F (t)(cos θ, sin θ ), and e is electron charge. Elec-
tron dynamics is described by the time-dependent Schrödinger
equation,

ih̄
d�

dt
= H�. (5)

Intraband (within a single band) electron dynamics is deter-
mined by the Bloch acceleration theorem [51], which describes
the electron intraband dynamics for both conduction and
valence bands,

h̄
dk
dt

= eF(t). (6)

For an electron with initial wave vector (lattice momentum)
q, the intraband electron dynamics is described by the time-
dependent wave vector, k(q,t), which is given by the solution
of Eq. (6),

k(q,t) = q + e

h̄
A(t), A(t) =

∫ t

−∞
F(t1)dt1, (7)

where A is often called “vector potential” since it is a
vector potential in a specific gauge. The corresponding wave
functions, which are solutions of Schrödinger equation (5)
within a single band approximation, i.e., without interband
coupling, are the Houston functions [52],

	(H )
αq (r,t) = �

(α)
k(q,t)(r)e−(i/h̄)

∫ t

−∞ dt1Eα[k(q,t1)], (8)

where α = v or c for the VB and the CB, respectively.
We express the general solution of the Schrödinger

equation (5) in the basis of Houston functions:

�q(r,t) =
∑

α=v,c

βαq(t)	(H )
αq (r,t), (9)

where βαq(t) are expansion coefficients, which satisfy the
following system of equations:

dβcq(t)

dt
= −i

F(t)Qq(t)

h̄
βvq(t), (10)

dβvq(t)

dt
= −i

F(t)Q∗
q(t)

h̄
βcq(t), (11)

where vector functions Qq(t) are related to the interband dipole
matrix elements, D,

Qq(t) = D[k(q,t)]e−(i/h̄)
∫ t

−∞ dt1{Ec[k(q,t1)]−Ev [k(q,t1)]}, (12)

D(k) = 〈
�

(c)
k

∣∣er
∣∣�(v)

k

〉
. (13)

With the known wave functions of the conduction and
valence bands calculated from Hamiltonian (1), we obtain the
following expressions for the x and y components of the dipole
matrix elements:

Dx(k) = e

2i
μ

ky

(
k2
x + k2

y

)
(
k2
x − k2

y

)2 + k2
xk

2
yμ

2
(14)

and

Dy(k) = −e

2i
μ

kx

(
k2
x + k2

y

)
(
k2
x − k2

y

)2 + k2
xk

2
yμ

2
, (15)

where μ = m1/m2. The dipole matrix elements, Dx and Dy ,
have maxima at the degeneracy point, k = 0. Near this point,
the properties of the interband dipole coupling depend on
polarization of the optical pulse, i.e., on angle θ , and on the
ratio of effective masses, μ. For a given linear polarization of
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FIG. 1. Interband dipole matrix element Dθ . (a) Polarization of
the pulse is along axis x (θ = 0) and μ = 1. (b) The same as (a)
but for μ = 0.5. (c) Polarization of the pulse is along the diagonal
(θ = π/4) and μ = 1. (d) The same as (c) but for μ = 0.5.

the pulse, the effective interband coupling is determined by
the following expression:

Dθ (k) = Dx(k) cos θ + Dy(k) sin θ. (16)

The intraband dynamics determines the electron trajectory in
the reciprocal space, which is along the direction of polariza-
tion of the pulse as given by Eq. (7). Along this trajectory, the
interband coupling is characterized by effective dipole matrix
element Dθ . Depending on polarization direction, dipole
matrix element Dθ (k) as a function of crystal momentum k

has either one or two peaks, as illustrated in Fig. 1. This is
in contrast to a graphene monolayer, for which the effective
coupling always has only one peak.

For the pulse polarization along the axis of symmetry of the
system, i.e., axis x or y, the dipole coupling has two peaks [cf.
Figs. 1(a) and 1(b)]. For example, for θ = 0 (polarization along
axis x), the effective coupling is Dθ=0 = Dx [see Eq. (14)].
In the reciprocal space, dipole matrix element Dx has two
maxima as shown in Figs. 1(a) and 1(b). These maxima are at

kx

ky

= ±
√√

4 − μ2 − 1. (17)

With decreasing μ, the corresponding peaks become narrower
as shown in Fig. 1(b), while the area under each peak does
not depend on μ, i.e.,

∫ 0
−∞ Dxdkx = ∫ ∞

0 Dxdkx = eπ/2i.
For a generic direction of polarization, i.e., θ �= π/4, the
effective dipole matrix element, Dθ , always has two peaks
in the reciprocal space similar to Figs. 1(a) and 1(b). Only for
θ = π/4, this behavior degenerates to having only one peak
as shown in Figs. 1(c) and 1(d).

We solve numerically the system of equations (10) and (11)
with initial condition βvq = 1, which corresponds to the initial
population in the VB. We characterize the corresponding elec-
tron dynamics in terms of the CB population, generated electric

current, and the transferred charge. The time-dependent CB
population is defined as NCB(q,t) = |βcq(t)|2, where the
residual value of the CB population, N

(res)
CB (q), is defined as

the population after the pulse. We study below both N
(res)
CB (q)

as a function of lattice momentum and the net residual CB
population,

N (res) =
∑

q

N
(res)
CB (q). (18)

The electric current, J(t) = [Jx(t),Jy(t)], generated during
the pulse is determined by the following expression:

Jj (t) = e

a2

∑
q

∑
α1,α2=v,c

β∗
α1qV

α1α2
j βα2q(t), (19)

where j = x,y and V
α1α2
j are the matrix elements of the

velocity operator

V̂j = 1

h̄

∂H0

∂kj

, (20)

calculated between the CB and VB states. These matrix
elements have the following forms:

V cv
x = iDx(k)[Ec(k) − Ev(k)] /h̄, (21)

V cv
y = iDy(k)[Ec(k) − Ev(k)] /h̄, (22)

V cc
x = h̄kx

⎛
⎝ 1

m0
+ 1

m1

(
k2
x − k2

y

) + 1
2μ2k2

y√(
k2
x − k2

y

)2 + μ2(kxky)2

⎞
⎠, (23)

V cc
y = h̄ky

⎛
⎝ 1

m0
+ 1

m1

(
k2
y − k2

x

) + 1
2μ2k2

x√(
k2
x − k2

y

)2 + μ2(kxky)2

⎞
⎠, (24)

V vv
x = h̄kx

⎛
⎝ 1

m0
− 1

m1

(
k2
x − k2

y

) + 1
2μ2k2

y√(
k2
x − k2

y

)2 + μ2(kxky)2

⎞
⎠, (25)

V vv
y = h̄ky

⎛
⎝ 1

m0
− 1

m1

(
k2
y − k2

x

) + 1
2μ2k2

x√(
k2
x − k2

y

)2 + μ2(kxky)2

⎞
⎠. (26)

With the current given by Eq. (19), we can calculate the charge
transferred during the pulse,

Qtr,j =
∫ ∞

−∞
dtJj (t). (27)

III. RESULTS AND DISCUSSION

The results presented in this section have been obtained for
the following parameters of the system: m0 = me, m2 = me,
and different values of parameter μ = m1/m2, where me is
electron mass.

In Fig. 2 the residual conduction band population, N (res)
CB (k),

is shown as a function of wave vector k for different
polarizations, i.e., angle θ , of the optical pulse and different
values of parameter μ. The distribution of N

(res)
CB (k) shows

high-contrast peaks, localized near the local maximum of
the effective interband dipole coupling (cf. Fig. 1). Note the
fourfold rotational symmetry of distribution N

(res)
CB in Fig. 2.
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FIG. 2. Residual conduction band population N
(res)
CB as a

function of wave vector k for different values of parame-
ter μ and angle θ . The amplitude of the pulse is F0 = 1
V/Å. (a) μ = 1, θ = 0; (b) μ = 1, θ = π/4; (c) μ = 1, θ =
π/2; (d) μ = 0.5, θ = 0; (e) μ = 0.5, θ = π/4; (f) μ = 0.5,
θ = π/2.

In Fig. 2, a region of large N
(res)
CB contains fringes of high

and low residual CB population. These fringes are due to
the interference of two passages per optical period of the
same region of enhanced interband coupling (see Appendix
for more discussion). This fringe structure is more developed
with larger number of fringes for smaller values of μ [see
Figs. 2(d)–2(f)]. This is due to the fact that Dx becomes
more localized and extended to larger values of ky for smaller
values of μ [see Fig. 1(a)]. Generally, this fringe structure
is a self-referenced interferogram that contains information
about dispersion and topological curvature of the electronic
bands.

The net residual CB population, N (res), is shown in Fig. 3
as a function of the pulse amplitude, F0. The dependence of
N (res) on angle θ is different for smaller, μ = 0.5, and larger,
μ = 1.0, values of μ. For μ = 0.5, the net CB population is
almost isotropic for all amplitudes of the pulse with small
anisotropy at F0 < 1 V/Å [see Fig. 3(b)]. For μ = 1.0, the
net CB population is isotropic for small field amplitudes, but
becomes highly anisotropic at large amplitudes, F0 > 1.0 V/Å
[see Fig. 3(a)]. At such large amplitudes, the residual CB
population is the smallest at θ = 0. Similar anisotropy is
also expected for μ = 1.0, but for larger pulse amplitude,
F0 > 2 V/Å. The origin of such anisotropy is the overlap
of two regions of large N

(res)
CB (k) for polarization angle θ = 0.

These regions correspond to two maxima of interband dipole
coupling, Dx . Since these maxima are more localized for
smaller values of μ, then the anisotropy in N (res)(θ ) is more
pronounced at μ = 0.5.

The finite CB population during the pulse also produces
an electric current, J(t), which can be found from Eq. (19).
In Fig. 4, the current density, J(t), is shown as a function of
time together with the corresponding vector potential, which
is the time integral of the electric field. The current density
almost follows the profile of the vector potential. The generated
electric current results in finite charge transfer, Qtr , which is
defined by Eq. (27). From the current dynamics, shown in
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FIG. 3. Residual conduction band population as a function of
pulse amplitude F0 for different values of angle θ (polarization of
the pulse) and parameter μ. The black lines correspond to α = 0
(polarization along axis x) and the dashed lines show the results for
θ = π/4. The values of parameter μ are 1.0 (a) and 0.5 (b).

Fig. 4, it follows that the transferred charge is positive, which
means that the direction of the charge transfer is the same as
the direction of the field maximum.

The calculated transferred charge is shown in Fig. 5 as a
function of the field amplitude, F0. The transferred charge is
positive for all F0. It is approximately inversely proportional
to parameter μ (see Fig. 5). There is also a weak dependence
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FIG. 4. Electric current density as a function of time for amplitude
F0 = 1.0 V/Å. The parameter μ is 1.0. The red line shows the
corresponding vector potential, A(t).
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FIG. 5. Transferred charge density through the system as a
function of F0 for different values of parameter μ and angle θ

(polarization of the pulse).

of Qtr on the pulse polarization, i.e., angle θ . While for the net
residual CB population, there is a strong dependence of N (res)

on angle θ , e.g., at μ = 1 and F0 = 2.0 V/Å, N (res) changes by
almost 50% with θ , the transferred charge is almost isotropic
with angle variations less than 5%.

For μ = 0.5, the transferred charge, Qtr , has the largest
value at polarization angle θ = π/4 for all amplitudes of the
pulse. For μ = 1.0, the transferred charge as a function of angle
θ has maximum value at θ = 0 for small amplitudes, F0 � 1
V/Å, while at large amplitudes, F0 > 1 V/Å, the maximum
of Qtr is realized at θ = π/4. Thus, if Qtr is measured as a
function of angle θ at a given amplitude of the pulse, then for
different amplitudes F0 we expect different behavior. While for
all F0 the transferred charge as a function of θ has the periodic-
ity of π/2, the positions of maxima and minima depend on F0

and μ. If the system is characterized by parameter μ = 0.5,
then for all amplitudes F0, the maximum of Qtr occurs at
θ = π/4 and the minimum is at θ = 0 or π/2. For larger values
of μ, e.g., μ = 1.0, at small amplitude F0, the maximum of
Qtr is at θ = 0 (or π/2) and the minimum is at θ = π/8 [see
Fig. 6(b)]. At larger amplitude F0, the maximum of Qtr is at
θ = π/8 and the minimum is at θ = 0 (π/2) [see Fig. 6(a)].

IV. CONCLUSION

Interband electron dynamics in an ultrashort optical pulse
field strongly depends on the distribution of the interband
dipole matrix elements in the reciprocal space. For the surface
states of a topological crystalline insulator with quadratic
gappless bands, the interband dipole matrix elements are
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FIG. 6. Transferred charge density through the system as a
function of angle θ for μ = 1.0. The transferred charge is calculated
along the direction of polarization of the pulse. The amplitude of the
optical pulse is (a) F0 = 2.0 V/Å and (b) F0 = 0.8 V/Å.

singular at the degeneracy point and are anisotropic around
this point. The distribution of the residual CB population
in the reciprocal space is correlated with the corresponding
distribution of the interband dipole matrix elements. Namely,
the distribution of CB population, N

(res)
CB , shows high-contrast

peaks, localized near the local maximum of the interband
dipole coupling. The number of the high-contrast peaks in
N

(res)
CB is correlated with the number of peaks in the dipole

matrix elements as a function of wave vector along the
direction of pulse polarization. The number of peaks changes
from four to two with rotation of the polarization direction.

The ultrashort optical pulse causes the charge transfer
through the system. The charge is transferred in the direction
of the maximum field. The magnitude of the transferred charge
depends on the amplitude of the pulse and the direction of the
pulse polarization.
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APPENDIX

To illustrate the nonmonotonic dependence of the residual
conduction band population in the reciprocal space along the
line of maxima of the interband dipole matrix element, we
consider a simplified model of the interband coupling. For
concreteness we assume that the pulse is polarized along axis
x (θ = 0). In this case the interband dipole matrix element as
a function of kx has two maxima. We consider the electron
dynamics near one these maxima.

For the x-polarized optical pulse the electron trajectory
is determined by an acceleration theorem and is shown
schematically in Fig. 7(a) for initial wave vector (kx,0,ky,0).
Such trajectory passes twice though the maximum of the
dipole matrix elements, which is shown by a dashed line. Such
passages occur at moments of time t1 and t2. These moments of
time correspond to equal values of vector potential as shown in
Fig. 7(b). At these points the electric field has different values,
F1 and F2 [see Fig. 7(c)].

To describe the interband dynamics corresponding to the
trajectory shown in Fig. 7(a) we approximate the interband
dipole coupling by a steplike function, which is nonzero and
constant only within narrow interval kx,max − δx/2 < kx <

kx,max + δx/2, where kx,max is the position of the maximum of
Dx and δx is the width of the maximum (see Fig. 8). The value
of the dipole matrix element within this interval is iδ0/e, where
�0 is related to �x as �0δx = π/2. The value of the dipole
matrix element at the peak and, correspondingly, the width of
the peak depend on ky,0. With increasing ky,0, maximum D0

decreases and width �0 increases.
We also assume that the width δx is small so that within the

region of nonzero constant dipole matrix element, the energies,
Ec and Ev , of the VB and CB levels and the electric field, Fc,
are constant. Under these assumptions, the interband mixing
occurs only within the region kx,max − δx/2 < kx < kx,max +
δx/2, where the system of equations (10) and (11) takes the
form

dβcq(t)

dt
= − i

h̄
�0Fce

−i(Ec−Ev )t/h̄βvq(t), (A1)

dβvq(t)

dt
= − i

h̄
�0Fce

−i(Ec−Ev )t/h̄βcq(t). (A2)

Taking into account acceleration theorem (6), we change the
variable from t to kx in the system of equations (A1) and (A2).
The new system of equations becomes

dβcq(kx)

dkx

= −i�0e
−iκkx βvq(kx), (A3)

dβvq(kx)

dkx

= −i�0e
iκkx βcq(t), (A4)

where κ = (Ec − Ev)/eFc. Solution of the system of equa-
tions (A3) and (A4) determines the relation between the coeffi-
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FIG. 7. Illustration of electron interband dynamics for the x-
polarized optical pulse. (a) Dashed lines show the positions of the
maxima of the interband dipole coupling. The red line illustrates
the electron trajectory in the reciprocal space, where (kx,0,ky,0) is
the initial electron wave vector. The electron trajectory passes twice
the region of large interband coupling (dashed line) at two moments
of time, t1 and t2. These passages are shown by green dots (for
x-polarized pulse these points coincide, but for illustration purposes
the dots are shifted in space). (b) Vector potential of the optical pulse
as a function of time. The moments of time t1 and t2 are the same
as in panel (a). At these moments the vector potential is the same.
(c) The electric field of the optical pulse as a function of time. At the
moments of time t1 and t2 the magnitudes of electric field are not the
same, F2 > F1.

cients β̂L = (βc,L,βv,L) at kx = kx,max − δx/2 and coefficients
β̂R = (βc,R,βv,R) at kx = kx,max + δx/2,

β̂R = T̂ (κ)β̂L, (A5)

where T̂ (κ) is the transfer matrix, which is given by the
following expression:

T̂ (κ) = iR̂φ�̂γ,�, (A6)

R̂φ =
(

e−iφ 0

0 e−iφ

)
, (A7)

�̂γ,� =
(− cos γ e−� sin γ

sin γ cos γ e�

)
. (A8)
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kxkx,max

δx

Dx /e

Δ0 

kx,0

T1

T2
-1

R1 2

34

FIG. 8. Approximation for the interband dipole coupling near the
maximum. The width of the peak is δx and its height �0. Red line
illustrates part of the electron trajectory in the reciprocal space–see
Fig. 7(a). The trajectory passes twice through the maximum of the
interband coupling. Along the trajectory strong interband mixing
occurs only between points! “1” and “2”, and “3” and “4”. The values
of β̂ at points “2” and “1” are related by transfer matrix T1, at points
“2” and “3” - by accumulation of dynamic phase, which is described
by rotational matrix R, and at points “3” and “4” - by transfer
matrix T2.

Here the angles φ, γ , and � are defined by the following
expressions:

φ = κδx, (A9)

γ = − arcsin

[
sin

(
π
2

√
1 + (κ/2�0)2

)
√

1 + (κ/2�0)2

]
, (A10)

and

� = arctan

⎡
⎣

√
1 +

(
2�0

κ

)2

cot

⎛
⎝π

2

√
1 +

(
κ

2�0

)2
⎞
⎠

⎤
⎦.

(A11)

Then the electron interband dynamics along the trajectory
shown in Fig. 8 by the red line is described by the following
set of expressions: (i) between points “1” and “2” (see Fig. 8)
the expansion coefficients β̂2 and β̂1 are related by the transfer
matrix T̂ (κ1),

β̂2 = T̂ (κ1)β̂1, (A12)

where κ1 = (Ec − Ev)/eF1. (ii) Between points “2” and “3”
the interband dipole matrix element is zero, then the electron
dynamics between these points is determined by accumulation
of the dynamics phases without any interband mixing,

β̂3 = R̂ξ β̂2, (A13)

where angle ξ = ∫ t2
t1

Ec(t)dt/h̄ depends on the path length
between points “2” and “3”. (iii) between points “3” and “4”
the expansion coefficients β̂3 and β̂4 are related by the transfer
matrix T̂ (κ2),

β̂4 = T̂ −1(κ2)β̂3, (A14)

where κ2 = (Ec − Ev)/eF2.
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FIG. 9. Residual population, |βc|2, of the conduction band state
with initial wave vector (kx,0,ky,0) as a function of κ2/2�0 =
(Ec − Ev)/(2eF2�0). The parameter, κ1, is 3κ2. The red line shows
the function sin2 (γ1 + γ2), while the black line corresponds to
sin2 (γ1 − γ2). Possible values of residual conduction band population
are shown by dashed regions.

Combining relations (A12)–(A14), we obtain

β̂4 = T̂ −1(κ2)R̂ξ T̂ (κ1)β̂1. (A15)

Substituting Eq. (A6) into expression (A15), we derive

β̂4 = �̂γ2,−�2R̂ξ+φ1−φ2�̂γ1,�1 β̂1, (A16)

where the indexes 1 and 2 correspond to two values of electric
field F1 and F2, respectively. Since β1 = (0,1) (in the initial
state the valence band is occupied), the residual conduction
band population, which is the conduction band component of
β̂4, is

|βc|2 = cos2 γ2 sin2 γ1 + cos2 γ1 sin2 γ2

− 1
2 sin(2γ1) sin(2γ2) cos ϕ, (A17)

where ϕ = �2 − �1 + 2(ξ + φ1 − φ2), which depends on
electron initial wave vectors. The magnitude of the residual
conduction band population is in the range

min{sin2(γ1 − γ2), sin2(γ1 + γ2)} < |βc|2
< max{sin2(γ1 − γ2), sin2(γ1 + γ2)}. (A18)

The difference between γ1 and γ2 is in the value of electric
field; all other parameters (Ec − Ev , �0) are the same. The
corresponding electric fields are shown in Fig. 7, where
F2 > F1. In Fig. 9 we show sin2 (γ1 − γ2) and sin2 (γ1 + γ2)
as a function of parameter κ2/2�0 assuming that κ1 = 3κ2,
i.e., F2 = 3F1. The possible values of |βc|2 are within the
dashed region. Since the magnitude of �0 is correlated with
the position of the point along the dashed line of maxima [see
Fig. 7(a)], i.e., with increasing ky along the line of maxima,
interband coupling �0 decreases (at ky = 0, D0 → ∞ and at
ky → ∞, D0 = 0), then the results shown in Fig. 9 illustrate
the fact the maximum of |βc|2 is at a finite distance from the
degeneracy point, k = 0.
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