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Surface plasmon lifetime in metal nanoshells
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The lifetime of localized surface plasmon plays an important role in many aspects of plasmonics and its
applications. In small metal nanostructures, the dominant mechanism of plasmon decay is size-dependent Landau
damping. We performed quantum-mechanical calculations of Landau damping for the bright surface plasmon
mode in a metal nanoshell with dielectric core. In contrast to the conventional model based on the electron
surface scattering, we found that the damping rate decreases as the nanoshell thickness is reduced. The origin
of this behavior is traced to the spatial distribution of plasmon local field in the metal shell. We also found that,
due to the interference of electron scattering amplitudes from the two nanoshell metal surfaces, the damping rate
exhibits pronounced quantum beats with changing shell thickness.
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I. INTRODUCTION

Lifetime of localized surface plasmons (SP) in metal nanos-
tructures is one of the fundamental problems in plasmonics that
has been continuously addressed for about 50 years [1–5]. The
importance of this issue stems from one of the major objectives
of plasmonics—generation of extremely strong local fields
at the nanoscale. The range of physical phenomena and
applications related to this goal cuts across physics, chemistry,
biology, and device applications. A small sample of examples
includes plasmon-enhanced spectroscopies of molecules or
semiconductor quantum dots near metal nanostructures, such
as surface-enhanced Raman scattering (SERS) [6], plasmon-
enhanced fluorescence [7–10], plasmon-assisted fluorescence
resonance energy transfer (FRET) [11–14], and plasmonic
laser (spaser) [15–20]. High Ohmic losses in bulk metal due to
strong electron-phonon interactions impose limitations on the
quantum yield of metal-based plasmonic devices, which can,
to some extent, be remedied by reducing the metal component
size.

However, at the length scale below ∼10 nm, new limitations
on the SP lifetime and, consequently, on quantum yield arise
due to the quantum-size effects [1]. Among those, the most
important is the Landau damping (LD) of SP—decay of SP
into the Fermi sea electron-hole pair [21–31]. This process has
been recently suggested as an efficient way of hot carriers
excitation in plasmon-based photovoltaic devices [32–42].
Starting with the pioneering work of Kawabata and Kubo
[43] for a spherical nanoparticle (NP), quantum-mechanical
calculations of LD rate were performed, using random phase
approximation (RPA) [43–50] or density functional theory
(DFT) [51–58] methods, for several NP shapes. Excitation
of an electron-hole pair with large optical frequency requires
momentum relaxation to satisfy the energy and momentum
conservation laws which, in small systems, can take place via
the electron surface scattering. Based on this picture, it was
suggested [59–63] that the SP LD rate in any small system
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should have the form

γs = A
vF

L
, (1)

where vF is the electron Fermi velocity (hereafter we set
� = 1) and L is the effective mean free path of ballistic
electrons confined in a hard-wall potential well, while the
phenomenological constant A, measured in the range 0.3−1.5
[1], accounts for surface potential, electron spillover, and
dielectric environment effects. Note that, for nonspherical
NPs, the SP damping by interband excitations can complicate
the LD size dependence. For example, absorption spectra for
gold nanorods [22,27] and nanoshells [23,24] show overall
narrowing of the SP resonance that is redshifted away from the
interband transitions onset. At the same time, recent systematic
studies of scattering spectra of single silver nanoprisms [29],
gold nanorods [30], and gold nanodisks [31] revealed signifi-
cant discrepancies with Eq. (1), while no size dependence was
detected for the SP resonance width of single gold nanoshells
[26], implying that LD is shunted by the bulk SP damping even
for relatively thin shells.

There is also a physical argument that renders Eq. (1)
invalid for nanostructures of general shape. Indeed, the rate
of electron-pair excitation by the SP local field must be
sensitive to the field distribution in the NP. Note that for a
solid sphere, the dipole SP electric field in the NP is uniform
and size independent, which is the reason Eq. (1) holds well
for spherical NPs in a very wide size range [1]. However, in the
general case, the local field distribution depends strongly on
NP size or shape, so that the simple picture implied by Eq. (1)
fails. Below we demonstrate that the effect of field distribution
leads to a drastically different size and shape dependence of the
LD decay rate in a nanostructure than that implied by Eq. (1).

In this paper, we present a quantum-mechanical calculation
of the LD rate for bright SP modes in a metal nanoshell
(NS) with a dielectric core. We find that, with decreasing NS
thickness d, the LD rate decreases as well, in sharp contrast to
the surface scattering model [59–63] predicting an increase of
� as the effective mean free path is reduced. Furthermore, for
small overall NS sizes, the SP LD rate exhibits quantum beats
as a function of shell thickness caused by the interference
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between electron scattering amplitudes from the inner and
outer NS boundaries.

The paper is organized as follows. In Sec. II we outline
our approach and present a formal expression for the LD rate
in terms of the SP eigenmodes. In Sec. III we describe the
plasmon eigenmodes in metal NS with dielectric core and
evaluate the NS internal energy. In Sec. IV, we evaluate the
power dissipated through electron-hole excitation by the SP
eigenmodes. The calculated LD rates are discussed in Sec. V,
and Sec. VI concludes the paper.

II. SURFACE PLASMON LANDAU DAMPING RATE IN
COMPOSITE METAL-DIELECTRIC NANOSTRUCTURES

In this section we outline our approach for calculations
of the plasmon damping rate in a composite metal-dielectric
structure embedded in a dielectric medium. We assume that
the structure is characterized by dielectric function of the form
ε(ω,r) = ε′(ω,r) + iε′′(ω,r) and the retardation effects are
unimportant. In the quasistatic case, the plasmon eigenmodes,
labeled by n here, are determined by the Gauss’s law

∇ · [ε′(ωn,r)En] = 0, (2)

where ωn is the eigenfrequency, En = −∇�n is the mode local
field, and �n is the potential. In the following we assume that
only the metal dielectric function εm(ω) = ε′

m(ω) + iε′′
m(ω) is

complex and dispersive. The decay rate of a plasmon mode is
given by [64]

�n = Qn/Un, (3)

where Un is the mode energy [65],

Un =
∫

dV

16π

∂(ωnε
′)

∂ωn

|En|2 = ωn

16π

∂ε′
m

∂ωn

∫
dVm|En|2, (4)

and Qn is the mode dissipated power

Qn = ωn

2
Im

∫
dV E∗

n · Pn, (5)

where Pn is the polarization vector (Vm stands for the metal
volume). In the local case, i.e., Pn = En(ε − 1)/4π , Q is given
by the usual expression [65]

Qn = ωnε
′′
m

8π

∫
dVm|En|2, (6)

which, together with the mode energy (4), yields the standard
plasmon damping rate [66],

�n = 2ε′′
m

(
∂ε′

m

∂ωn

)−1

. (7)

For the Drude form of metal dielectric function, εm = εi −
ω2

p/ω(ω + iγ ), where εi is a weakly-dispersive interband
contribution, ωp is the bulk plasmon frequency, and γ is the
scattering rate, one obtains γn = γ for all modes.

The surface contribution Qs
n originates from the genera-

tion of electron-hole pairs by the plasmon local field near
metal-dielectric interfaces and can be included in Eq. (5)
by relating the polarization vector Pn(r) to the microscopic
electron polarization operator P (ω; r,r ′) via the induced
charge density: ρ(r) = ∫

d r ′P (r,r ′)�(r ′) = −∇ · P(r) [64].

Integrating Eq. (5) by parts, we obtain

Qs
n = ωn

2
Im

∫
dV dV ′�∗

n(r)P (ωn; r,r ′)�n(r ′). (8)

In the first order, Qs
n is obtained within RPA as [67]

Qs
n = πωn

∑
αα′

|〈α′|�n|α〉|2δ(εα − εα′ + ωn), (9)

where 〈α′|�n|α〉 = ∫
dVmψ∗

α′�nψα is the transition matrix
element between electron state ψα with energy εα below the
Fermi level EF and electron state ψα′ with energy εα′ above
the Fermi level under the perturbation �n (factor 2 due to the
spin degeneracy is included). Note that often in the literature,
the plasmon surface-assisted decay rate �s

n is identified with
the first-order transition probability rate, similar to Eq. (9) (up
to the factor ωn/2); it must be emphasized that, in a system
with dispersive dielectric function, the accurate expression is
�s

n = Qs
n/Un [64]. In the rest of this paper, this expression

will be used to calculate the SP damping rate in a metal NS.

III. PLASMON MODES IN METAL NANOSHELLS
WITH DIELECTRIC CORE

Here we collect the relevant formulas for plasmonic
eigenstates in a spherical NS with inner and outer radii R1

and R2, respectively, and core dielectric constant εc, in a
medium with dielectric constant εd (see inset in Fig. 1).
In the quasistatic limit, the plasmonic eigenfunctions in
each region have the form �LM (r) = �

(i)
L (r)YLM (r̂), where

r and r̂ are the magnitude and orientation of the radius
vector with the origin at NS center, i = (c,m,d) denotes
core, metal, and outside dielectric regions, respectively, and
YLM (r̂) are spherical harmonics. In each region, the eigen-
functions are superpositions of two independent solutions
of Laplace equation in spherical coordinates, rLYLM (r̂) and
r−L−1YLM (r̂). The equation for eigenvalues is obtained by
imposing standard boundary conditions on the radial part
of potentials, �

(i)
L (r), and radial component of electric field,

FIG. 1. Frequency of bright dipole plasmon mode in gold NS
with various core and outside dielectrics is plotted vs NS aspect ratio.
Inset: Electric field distribution for SiO2/Au/H2O NS with aspect
ratio R1/R2 = 0.7.
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E
(i)
L (r) = −∂�

(i)
L (r)/∂r , as

ε̃cmε̃md + L(L + 1)εcmεmdκ
2L+1 = 0, (10)

where κ = R1/R2 is the NS aspect ratio, and we denoted
εαβ = ε′

α − ε′
β and ε̃αβ = Lε′

α + (L + 1)ε′
β . The plasmon fre-

quencies are obtained by solving Eq. (10) for the real part of
metal dielectric function,

ε′
m(ωL) = −μL

2
±

√
μ2

L

4
− εcεd,

(11)

μL = (2L + 1)

L(L + 1)

ε̃cd

(1 − κ2L+1)
− εc − εd,

where alternating (±) sign correspond to bright and dark
plasmon modes, respectively. The bright plasmon spectrum
matches that of a solid NP plasmon in the κ = 0 limit: ε̃md =
Lε′

m + (L + 1)εd = 0. The higher frequency dark plasmon
mode couples weakly to the external fields and will not be
considered here.

In Fig. 1, we show the dependence of bright plasmon mode
frequency ω1 (for L = 1) on aspect ratio κ = R1/R2 of Au
NS with several choices of core and outside dielectrics. In all
numerical calculations, the experimental dielectric function for
gold as well as for core and outside dielectrics were used [68].
With decreasing shell thickness, after a prolonged plateau for κ

up to approximately 0.5–0.7 (depending on dielectric content),
the frequency develops a redshift. The inset shows electric field
distribution for the dipole plasmon mode oscillating along the
z axis in a NS with κ = 0.7. Note that, in a thin NS, the electric
field of bright plasmon is mainly concentrated outside of the
metal shell, in contrast to the field distribution in a solid metal
NP.

The normalized (dimensionless) radial eigenfunctions
�L(r) in core (r < R1), shell (R1 < r < R2), and outer
dielectric (r > R2) regions have the form

�
(c)
L (r) = (2L + 1)

ε′
mκL

ε̃cm

(
r

R1

)L

, (12)

�
(m)
L (r) = κL

(
r

R1

)L

+ 1

L + 1

ε̃md

εmd

(
R2

r

)L+1

, (13)

�
(d)
L (r) = 2L + 1

L + 1

ε′
m

εmd

(
R2

r

)L+1

, (14)

and are continuous at the metal-dielectric interfaces,

�1L ≡ �
(m)
L (R1) = (2L + 1)

ε′
mκL

ε̃cm

, (15)

�2L ≡ �
(m)
L (R2) = 2L + 1

L + 1

ε′
m

εmd

. (16)

The radial electric fields satisfy the standard boundary con-
ditions, i.e., εαE

(α)
L (r) is continuous, and take the following

values at the interfaces (on the metal side)

E1L ≡ E
(m)
L (R1) = − L

R1

εc

ε′
m

�1L,

(17)

E2L ≡ E
(m)
L (R2) = L + 1

R2

εd

ε′
m

�2L,

FIG. 2. Normalized energy of bright dipole plasmon modes in
gold NS with various core and outside dielectrics is plotted vs NS
aspect ratio.

while their ratio at the interfaces is given by

qL = E1L/E2L = −LκL−1 εmdεc

ε̃cmεd

. (18)

Note that the electric field orientations at the inner and outer
interfaces (on the metal side) are opposite.

Using the above eigenfunctions, the plasmon mode energy
can be straightforwardly calculated from Eq. (4). Since the
eigenfunctions are harmonic functions inside each region, the
integral in Eq. (4) reduces to the boundary terms, and, using
the relations (17) between fields and potentials at the interface,
we obtain

UL = |ε′
m|ωL

16π

∂ε′
m

∂ωL

[
R3

1

Lεc

E2
1L + R3

2

(L + 1)εd

E2
2L

]
. (19)

The aspect ratio dependence of the bright dipole plasmon
energy U1 normalized to solid NP plasmon energy U

np

1 with
the same overall size is plotted in Fig. 2. The NS mode
energy depends strongly on core and outside dielectrics, but
is largely comparable to that for a solid NP. This is due to a
somewhat similar distribution of the surface charges for bright
NS plasmon and solid NP plasmon modes: In both cases,
the opposite charges are located at different hemispheres so
the energy is proportional to the core-shell particle volume.
In contrast, for dark modes (not shown here), the opposite
charges are located at inner and outer boundaries, so the energy
vanishes as the shell thickness decreases.

IV. POWER DISSIPATED BY PLASMON
MODES IN NANOSHELLS

We now turn to calculation of dissipated power Eq. (9)
(we drop superscript s in the following). We represent the
NS confining potential as a three-dimensional quantum well
with hard boundaries at R1 and R2 and amplitude V0: V (r) =
V0θ (r − R1)θ (R2 − r). The role of realistic surface potential
and nonlocal effects will be discussed later. The electron wave
functions have the form ψnl(r)Ylm(r), where n, l, and m and
electron radial, angular momentum, and magnetic numbers,
respectively. Due to spherical symmetry, the angular part
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factorizes out and Eq. (9) takes the form

QL = πωL

∑
nn′ll′

aL
ll′

∣∣ML
nl,n′l′

∣∣2
δ(εnl − εn′l′ + ωL), (20)

where ML
nl,n′l′ = 〈nl|�L|n′l′〉 is the radial transition matrix

element and

aL
ll′ = 1

2L + 1

∑
Mmm′

∣∣∣∣
∫

d�YLMY ∗
lmYl′m′

∣∣∣∣
2

(21)

is the angular contribution. The latter is nonzero only for l =
l′ ± L, and for typical l,l′ 	 L can be approximated as aL

ll′ ≈
δll′ l/2π .

The matrix element 〈α|�LM |α′〉 in Eq. (9) is dominated
by the surface contribution, which can be obtained by
first commuting twice the plasmon potential �LM with the
Hamiltonian,

〈α|�LM |α′〉 = 1

ω2
L

〈α[H [H,�LM ]]|α′〉

≈ 1

mω2
L

〈α|∇�LM · ∇V |α′〉, (22)

which, after separating out the angular part, leads to the
following expression for the radial matrix element,

ML
nl,n′l′ = V0

mω2
L

[ψnl(R1)ψn′l′ (R1)EL(R1)

−ψnl(R2)ψn′l′ (R2)EL(R2)]. (23)

Then, for infinitely high potential barrier (V0 → ∞), match-
ing the wave functions across the well boundaries gives√

2mV0ψnl(Ri) ≈ −ψ ′
nl(Ri) (here prime stands for the deriva-

tive), and the matrix element takes the form

ML
nl,n′l′ = 1

2m2ω2
L

[ψ ′
nl(R1)ψ ′

n′l′ (R1)E1L

−ψ ′
nl(R2)ψ ′

n′l′(R2)E2L]. (24)

The first and second terms in the r.h.s. describe excitation,
by the plasmon electric field, of a Fermi sea electron-hole
pair accompanied by momentum transfer to the inner and
outer boundaries, respectively. Correspondingly, QL can be
decomposed as QL = Q11

L + Q22
L − 2Q12

L , where

Q
ij

L = e2

8m4ω3
L

E1LE2L

∑
lnn′

ψ ′
nl(Ri)

×ψ ′
n′l(Ri)ψ

′
nl(Rj )ψ ′

n′l(Rj )δ(εnl − εn′l + ωL),

(25)

and we used that aL
ll′ ≈ δll′ l/2π .

Consider first the inner surface contribution Q11
L . For

typical electron energies εnl ∼ EF , we can adopt semiclassical
approximation for the electron wave functions:

ψnl(r) =
√

4m

plτl

sin
∫ R2

r

pldr,pl =
√

2mε − (l + 1/2)2

r2
,

(26)

where τl(ε) is the period of classical motion between two
turning points. In this case, we find

ψ ′
nl(R1) = −

√
4mpl(R1)/τl. (27)

Since the plasmon energy ωL is much larger than the spacing
ε0 = vF /d between the energy levels with adjacent n (at fixed
l) in a spherical well, the sums in Eq. (25) can be replaced by
the integrals,

∑
n → ∫

dερl(ε) (with ε < EF ,ε′ > EF ), where
ρl(ε) = ∂n/∂εnl is the partial density of states related to the
classical period as ρl = τl/2π (see Appendix). The result reads

Q11
L = E2

1L

2π2m2ω3
L

∑
l

l

∫ EF

EF −ωL

dεpl(ε,R1)pl(ε + ωL,R1).

(28)

Note that ρl cancels out, i.e., the level spacing disappears from
the result. In the energy integral, the integration variable is
first shifted as ε → EF + ε − ωL/2, where ε now changes in
the interval (−ωL/2,ωL/2), and then rescaled to x = ε/ωL.
The sum over l is replaced by the integral restricted by
maximal value l ∼ pF R1 that is determined by the condition
pl(ε,R1) � 0. After the change of variables to s = l2/(pF R1)2,
it contributes a factor proportional to the inner surface area.
The result reads

Q11
L = E2

F R2
1

2π2ω2
L

E2
1L g(ω/EF ), (29)

where g(ξ ) = 2
∫ 1/2
−1/2 dx

∫
dsf (ξ,x,s) with f (ξ,x,s) =

[(1 + ξx − s)2 − ξ 2/4]1/2 is a dimensionless function normal-
ized to g(0) = 1.

Turning to the outer surface term Q22
L , the main contribution

into the r.h.s. of Eq. (25) comes from the terms with pl(ε,R2) �
0 [otherwise ψnl(R2) are exponentially small]. In this case, we
have

ψ ′
nl(R2) = −(−1)n

√
4mpl(R2)/τl, (30)

where the sign factor (−1)n accounts for the parity of electron
wave function with n − 1 nodes between R1 and R2. The rest
of the calculation is carried in a similar way, and the result,

Q22
L = E2

F R2
2

2π2ω2
L

E2
2L g(ω/EF ), (31)

is proportional to the outer surface area.
Finally, consider now the interference term Q12

L . Using
Eqs. (27) and (30), we write

Q12
L = 2E1LE2L

m2ω3
L

∑
lnn′

l(−1)n−n′

τl(εnl)τl(εn′l)

×Fl(εnl,εn′l)δ(εnl − εn′l + ωL), (32)

with Fl(ε,ε′) = √
pl(ε,R1)pl(ε′,R1)pl(ε,R2)pl(ε′,R2). As ωL

changes (e.g., with changing aspect ratio), the relative parity
of electron and hole states, separated by energy ωL, changes
too, leading to a different sequence of alternating signs in
the sum in Eq. (32) which, in turn, results in oscillations
of Q12

L (quantum beats). The number of states contributing
into the sum in Eq. (32) is large, so that the oscillations
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can be described by substituting (−1)n−n′ = cos π (n − n′) =
cos[π

∫ ε′

ε
dερl(ε)]. Then Q12

L takes the form

Q12
L = E1LE2L

2π2m2ω3
L

∑
l

l

∫ EF

EF −ωL

dεFl(ε,ε + ωL)

× cos

[
π

∫ ε+ωL

ε

dε′ρl(ε
′)
]
, (33)

where l is restricted by the condition pl(ε,R1) � 0. Equation
(33) can be brought to the form

Q12
L = e2R2

1E
2
F

2π2ω2
L

E1LE2L G(ωL/EF ), (34)

where the dimensionless function G(ξ ) is rather cumbersome
and is given in the Appendix. For thin nanoshells, d/R2 � 1,
it can be evaluated analytically (see Appendix) and the result
reads

G(ξ ) = −4
sin D

D

sin(ξD/4)

ξD/4
, (35)

where D = ωL/ε0 = ωLd/vF is the ratio of plasmonic and
electronic energy scales.

Putting all together, we finally obtain

QL = E2
F R2

2

2π2ω2
L

(
E2

2L + κ2E2
1L − 2κ2E1LE2LG

)
. (36)

The last term in Q12 oscillates as a function of shell thickness d

due to the interference of electron scattering amplitudes from
inner and outer NS boundaries. These oscillations are, in fact,
quantum beats caused by the change, with d, of the number
of electron levels with alternating parities within the plasmon
energy ωL (i.e., the difference between numbers of even and
odd states oscillates between 0 and 1). The oscillations period
2πvF /ωL depends weakly on the shell thickness through
dependence of ωL on κ (see Fig. 1), and their amplitude slowly
dies out with increasing d.

In fact, the quantum beats of Q12 have a rather general
origin. Indeed, excitation of an electron-hole pair with energy
ω is accompanied by momentum transfer p0 ∼ ω/vF and
occurs in a region with the size r0 ∼ vF /ω. Therefore,
oscillations of the pair excitation rate with changing D = d/r0

reflect the nonlocality of surface-scattering mechanism of
momentum relaxation.

In Fig. 3, normalized dissipated power for the bright dipole
plasmon mode Q1 is plotted vs aspect ratio κ for overall NS
sizes R2 = 30 nm and R2 = 10 nm. Numerical calculations
were performed using the full expression for G(ξ ) given by
Eq. (A1) in the Appendix. While for larger NS with overall
size R2 = 30 nm, oscillations of Q1 are relatively weak [see
Fig. 3(a)], they become more pronounced for smaller NS (R2 =
10 nm) [see Fig. 3(b)]. Note that, for smaller R2, the same
values of κ correspond to smaller shell thicknesses. Another
striking feature is the decrease of dissipated power for κ larger
than 0.4. The reason for this behavior is that, with decreasing
shell thickness, the local field is pushed outside the metal shell
(see inset in Fig. 1) which, in turn, leads to the reduction of
the transition matrix element.

FIG. 3. Normalized dissipated power by bright dipole plasmon
modes in gold NS with various core and outside dielectrics is plotted
vs NS aspect ratio for (a) R2 = 30 nm and (b) R2 = 10 nm.

V. LANDAU DAMPING OF PLASMON
MODES IN NANOSHELLS

The plasmon damping rate, �L = QL/UL with QL and UL

given by Eqs. (36) and (19), respectively, takes the form

�L = 2ω2
pγL

ω3
L

(
∂ε′

m

∂ωn

)−1

, (37)

where

γL = 3vF

4R2

εd (L + 1)

|ε′
m(ωL)|

1 + κ2q2
L − 2κ2qLG

1 + κ3q2
L(L + 1)εd/Lεc

(38)

is the LD rate. Here qL = E1L/E2L is the electric fields’ ratio at
the interfaces given by Eq. (18). In deriving Eq. (38), we used
the relation ω2

p = 4πn/m = 4p3
F /3πm (for e = 1), where n

is the electron concentration.
Equations (37) and (38) represent our central result. Apart

from the dimensional factor vF /R2, the LD rate (38) is
determined by the ratio of plasmon local fields at the metal-
dielectric interfaces qL. The last factor describes the relative
contribution of the NS interfaces and includes the interference
correction. Importantly, comparison of Eqs. (37) and (7)
indicates that LD rate can be incorporated into the Drude
scattering rate as γ = γ0 + γL, where γ0 is the bulk scattering
rate, so the full plasmon damping rate is still given by Eq. (7),
but with modified Drude dielectric function.
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FIG. 4. Normalized Landau damping rate for bright dipole
plasmon modes in gold NS with various core and outside dielectrics
is plotted vs NS aspect ratio for (a) R2 = 30 nm and (b) R2 = 10 nm.

For solid NP (κ = 0), the plasmon eigenfrequency is
determined from Lεm(ωL) + (L + 1)εd = 0, and we re-
cover the LD rate of the Lth mode in a spherical
NP [43–47],

γ
np

L = 3L

4

vF

R2
. (39)

In thin NSs, the electric field is pushed out of the metal shell,
leading to the reduction of electron-hole excitation rate. For
thin NS (d/R2 � 1), the explicit dependence of the LD rate
on the shell thickness is obtained from Eq. (38) as (for L = 1)

γ1 ≈ 3

2

vF d

R2
2

[
1 − 4εcεd

ε̃2
cd

(1 − G)

]
, (40)

indicating a linear dependence on the shell thickness.
In Fig. 4, we show the calculated LD rate γ1 for the bright

dipole plasmon mode in gold NSs of overall sizes R2 = 30 nm
and R2 = 10 nm and several choices of core and outside
dielectrics. The rate shows approximately linear decrease with
increasing κ (i.e., decreasing d), consistent with Eq. (40). The
oscillations of γ1 are quite pronounced for smaller overall
NS size (R2 = 10 nm) and could be observable for typical
experimental range of aspect ratios (0.6–0.8) provided that
NS overall size is sufficiently small, so that the LD is not
shunted by the bulk scattering. Note that these oscillations
should be distinguished from those observed in solid NP
[51,52,57] due to size quantization of the electron energy

levels in a confined nanostructure, while here they are quantum
beats between electron scattering paths from different NS
interfaces.

VI. CONCLUSIONS

In conclusion, let us discuss the role surface potential,
dielectric environment, and nonlocal effects near the metal
surface on the plasmon LD that was extensively studied in solid
NPs [51–58]. These effects mainly affect the overall magnitude
of LD rates, but play no significant role in determining the LD
dependence on the nanostructure shape which, according to
our findings, is mainly determined by the local field ratio at
the interfaces. Extensive theoretical and experimental studies
of spherical NPs indicate that surface effects mainly affect the
phenomenological constant A [see Eq. (1)], but the overall
1/R dependence of the LD rate is unchanged [1]. In fact, the
important role of local fields in plasmon LD rate can explain
the relatively wide range of measured A (0.3–1.5 [1]), which
raised questions about the validity of the scattering model [56].
Indeed, as we mentioned in Sec. IV, excitation of an e-h pair by
plasmon local field takes place in a surface layer of thickness
r0 ∼ vF /ω. For vF ≈ 1.4 × 106 m/s in Au and Ag, we have
vF /ω ≈ 1 nm for �ω = 1.0 eV, i.e., for typical plasmon
frequencies in the range 1.5–3.5 eV, the layer thickness is just
a few Å. In a thin surface layer, the local fields are strongly
affected by the electron spillover and surface roughness effects
as well as by the dielectric environment, which can lead to large
variations of overall LD rate magnitude for different samples
and/or environments. Within our approach, the constant A can
be estimated by computing the effect of the above factors on
the local field, which is, however, out of the scope of this paper.

In summary, we calculated the Landau damping rate of
surface plasmons in metal nanoshells with dielectric core. We
found that the damping rate decreases with the shell thickness
due to the reduction of the local field magnitude inside a thin
metal shell. We also found that the Landau damping rate
exhibits quantum beats caused by the interference between
electron scattering paths from the nanoshell inner and outer
metal-dielectric interfaces.
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APPENDIX

Here we analyze function G(ξ ) in the interference term (34).
After shifting integration variables in Eq. (33) as ε → EF +
ε − ωL/2 and ε′ → EF + ε + ε′ and rescaling to x = ε/ωL

and s = l2/(pF R1)2, we arrive at (34) with

G(ξ ) = 2
∫ 1/2

−1/2
dx

∫
ds

√
f (ξ,x,s)f (ξ,x,κ2s)

× cos

[
πωL

∫ 1/2

−1/2
dx ′ρl[EF [1 + ξ (x + x ′)]]

]
,

(A1)
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where f (ξ,x,s) =
√

(1 + ξx − s)2 − ξ 2/4, and the partial
density of states is given by

ρl(ε)

= m

π

∫ R2

R1

dr

pl(ε,r)
= R2pl(ε,R2) − R1pl(ε,R1)

2πε

= R2

πvF

[√
1 + ξ (x + x ′) − κ2s − κ

√
1+ξ (x+x ′)−s

1+ξ (x+x ′)

]
.

(A2)

For ω/EF � 1, the x ′ integrals are easily evaluated, yielding

G(ξ ) = 2
∫ 1/2

−1/2
dx

∫ 1+ξx

0
ds

√
f (ξ,x,s)f (ξ,x,κ2s)

× cos[w(ξ,x,s)ωL/ε0], (A3)

where w(ξ,x,s) = (
√

f (ξ,x,κ2s) − κ
√

f (ξ,x,s))/(1 + ξx)
with f (ξ,x,s) ≈ 1 + ξx − s (here ε0 = vF /R2). Rescal-
ing s by 1 + ξx, Eq. (A3) factorizes as G(ξ ) =∫ 1/2
−1/2 dx(1 + ξx)2S(ξ,x), where

S(ξ,x) = 2
∫ 1

0
ds

√
(1 − s)(1 − κ2s)

× cos[a(ξ,x)(
√

1 − κ2s − κ
√

1 − s)], (A4)

with shorthand notation a(ξ,x) = (ωL/ε0)/
√

1 + ξx. With
substitution s = 1 − 1−κ2

κ2 sinh2 α, S is brought to the form

S(ξ,x) = 4(1 − κ2)2

κ3

∫ α0

0
dα(sinh α cosh α)2

× cos[a(ξ,x)
√

1 − κ2e−α], (A5)

where sinh α0 = κ/
√

1 − κ2. For a(ξ,x) 	 1, the integral is
dominated by the upper limit, and for thin shells, 1 − κ � 1,
corresponding to α0 > 1, can be evaluated as

S ≈ −4
sin(a

√
1 − κ2e−α0 )

a
√

1 − κ2e−α0
= −4

sin [a(1 − κ)]

a(1 − κ)
. (A6)

With the above S and after change of variable t = √
1 + ξx,

the expression for G(ξ ) takes the form

G(ξ ) = − 8

ξD

∫ t+

t−
dtt3 sin(tD), (A7)

where t± = √
1 ± ξ/2, and D = (1 − κ)ωL/ε0 = ωLd/vF .

Note that even though for ξ � 1 the integration interval
is small, the integrand is still an oscillating function since
D 	 1, and so the product Dξ can be arbitrary. In this case, a
straightforward evaluation yields Eq. (35).
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