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Wannier-Stark states of graphene in strong electric field
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We find theoretically the energy spectrum of a graphene monolayer in a strong constant electric field using a
tight-binding model. Within a single band, we find quantized equidistant energy levels (Wannier-Stark ladder),
separated by the Bloch frequency. Singular interband coupling results in mixing of the states of different bands
and anticrossing of corresponding levels, which is described analytically near Dirac points and is related to the
Pancharatnam-Berry phase. The rate of interband tunneling, which is proportional to the anticrossing gaps in
the spectrum, is only inversely proportional to the tunneling distance, in a sharp contrast to conventional solids
where this dependence is exponential. This singularity will have major consequences for graphene behavior in

strong ultrafast optical fields, in particular, leading to nonadiabaticity of electron excitation dynamics.
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I. INTRODUCTION

The dynamics of an electron in periodic potential and
external electric field is characterized by Bloch oscillations
[1], which are a feature of the intraband electron dynamics, and
Zener tunneling [2], which is related to interband coupling. The
Bloch oscillations occur due to acceleration of an electron by
electric field, which is described by the “acceleration theorem”
in the reciprocal space [3], and subsequent Bragg reflections
from the periodic lattice potential at the boundaries of the first
Brillouin zone. The interference of the electron wave packet,
following such periodic dynamics in the reciprocal space,
results in Wannier-Stark (WS) localization of an electron in the
coordinate space [3,4]. These WS states within a given band
are separated by the Bloch oscillation frequency [1] forming
an equidistant WS ladder. The Bloch oscillations and the
corresponding WS states have been observed experimentally
in semiconductor superlattices [5-9]. Recently, the Bloch
oscillations were reported to play a major role in high harmonic
generation by intense infrared [10] and terahertz [11] pulses
in crystalline solids.

The external electric field not only modifies the intraband
electron dynamics, which results in the formation of the
WS states, but also introduces interband coupling of the
states of different bands. Such coupling can be described
in terms of the Zener tunneling resulting in finite widths
of the WS levels (resonances) of individual bands [12—15],
or in terms of eigenstates of coupled Hamiltonian, which
results in mixing of the corresponding WS states of different
bands. The strongest mixing occurs in the resonance, when
the energies of the WS levels of different bands are equal. As
a function of electric field, at these points the levels exhibit
anticrossing behavior. In a time-dependent electric field, e.g.,
in the electric field of an optical pulse, passing of these
anticrossings defines time-dependent electron dynamics. This
can be described as an adiabatic formation of WS states of
different bands with subsequent passage of the anticrossing
points. Depending on the relation between the anticrossing
gap and the rate of change of electric field, the dynamics
of this passage can be adiabatic or diabatic [16]. Such a
description of electron dynamics in time-dependent electric
field was successfully used for interpretation of experimental
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results on interaction of ultrashort intense optical pulses with
dielectrics [17,18].

Description of the interaction of time-dependent electric
field, e.g., optical pulse, with a solid in terms of the dynamics
of passage of anticrossing points requires knowledge of both
the positions of the anticrossing points and the magnitudes
of the corresponding anticrossing gaps. These parameters
depend on the band structure of the solid and on the strength
of the interband coupling. In the following, we study the
properties of the WS states of monolayer graphene with
potential application to the description of the interaction of
strong optical field with electrons in graphene.

Graphene monolayer [19-21] has a honeycomb two-
dimensional crystal structure with a unique energy dispersion
relation. Namely, the low-energy excitations are gapless and
are described by the Dirac relativistic massless equation with
two Dirac cones. Another important feature of this relativistic
energy dispersion is the singularity of the interband dipole
matrix element between the valence and conduction bands
at the Dirac points. In this case, the corresponding interband
coupling, introduced by an electric field, is strong near the
discrete Dirac points.

In this we show that, due to this property, the stationary
Schrodinger equation in a constant electric field can be solved
exactly within the nearest-neighbor tight-binding model of
graphene for the electric field in the rational crystallographic
directions. Previously, the WS energy spectra of electrons
on a honeycomb lattice were studied in Ref. [22] in the
tight-binding approximation for both rational and irrational
directions of the electric field. It was shown that for an electric
field in a rational direction, there was the WS localization of
the electron wave functions in the field directions while in the
normal direction they were delocalized.

II. MAIN EQUATIONS

The WS states of an electron in graphene are defined as
electron states in periodic lattice potential of graphene and in
constant external electric field. These can be found as solutions
of the Schrodinger equation

HY = EV, (1
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where H is a single-particle Hamiltonian, which has the form
H = Ho + eFr. 2)

Here, H) is a single-electron Hamiltonian of graphene, which
determines the electron dynamics in periodic lattice potential
of graphene, r = (x,y) is a 2d vector, e is unit charge, and F =
[F cos 8, F sin 6] is the external constant electric field with the
magnitude F and the direction, determined by angle 6 relative
to the x axis [see Fig. 1(b)].

We describe the electron states in graphene within the
nearest-neighbor tight-binding model [23-26] with the tight-
binding coupling between the sites of two sublattices A and
B of the graphene crystal structure [see Fig. 1(a)]. Such a
model describes both the conduction and valence bands of
graphene and captures the properties of the Dirac points. In
the reciprocal space, the tight-binding Hamiltonian H, can be
represented by a 2 x 2 matrix of the form [23,24]

_( 9 vk
= (0 7%): ®

where y = —3.03 eV is the hopping integral and

S(K) =exp i& + 2exp —iakx cos aky @
V3 23 2

FIG. 1. (Color online) (a) Honeycomb lattice structure of two-
dimensional (2D) graphene, which consists of two sublattices with
atoms labeled by A (open circles) and B (filled circles), respectively.
The nearest-neighbor coupling with hopping integral y is also shown.
(b) The first Brillouin zone of graphene. Points K and K’ are two
inequivalent Dirac points, which correspond to two valleys of low-
energy spectrum of graphene. The direction of electric field is shown
by the blue line and is characterized by angle 6 relative to the x
axis. (c) Energy dispersion of graphene within the nearest-neighbor
tight-binding model. The K and K’ Dirac points are labeled. The
conduction and the valence bands correspond to positive and negative
energies, respectively.
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Here, a = 2.46 A is a lattice constant. The energy spectrum
of Hamiltonian H, consists of conduction band (7* or
antibonding band) and valence bands (i or bonding band) with
the energy dispersion E (k) = —y|f(k)| (conduction band)
and E (k) = y| f(k)| (valence band). This energy dispersion
is shown in Fig. 1(c). It consists of two inequivalent sets of
three Dirac points (and cones) K and K'. The corresponding
wave functions of the conduction and valence bands are,

respectively,
. eikr 1
\Ifl(()(r) = ﬁ (eiwk> )
and
eikr _1
o= (o) ©

where we denote f(k) = |f(k)|e*. The wave functions
\IJI((C) and \Illiv) have two components corresponding to two
sublattices A and B.

Taking the eigenfunctions W\" and W\’ of Hamiltonian H,
as the basis, we express the general solution of the Schrodinger
equation (1) in the form

() =Y [ @) + ¢k P (1)]. )
k

Expansion coefficients ¢,(k) and ¢.(k) satisfy the following
eigenvalue equations (see the Appendix):

B 36u(K)
E¢y(k) = Ey(K)¢py(k) + ieF ok + FD(K)¢c(k), (8)
d)c( )
E¢c(k) = E.(K)pc(k) + ieF —— + FD(k)¢,(k), (9)
where D(k) = [D,(k),D,(k)] is the dlpole matrix element

between the conduction and valence band states with the wave
vector K, i.e.,
Ao
D(k) = (W |er| @) = £ 10

(0 = (00 Jer| ) = £ 2% (10)
Substituting conduction and valence band wave functions (5)
and (6) into Eq. (10), we obtain the following expressions for
the interband dipole matrix elements:

a aky
D.(k) = -2 L +eos (5 ak),[cos(if;z _ZCOS(Z)J (11
24/3 1+ 4cos (T’)[cos(zf) + cos ()]
and
. ak, ak,
Dyl = ea sin (% )sm(;\kﬁ) .

2 1+4cos(“12( )[cos(;‘:kf + cos (”]2( )]

A solution ¢,(k) and ¢.(k) of Egs. (8) and (9) should satisfy
the periodic boundary condition in the reciprocal space with
the periodicity of the reciprocal lattice. From this condition,
we obtain the WS energy spectrum, Sec. II1.

Equations (8) and (9) constitute a system of the first-order
differential equations, where a constant electric field intro-
duces both interband and intraband coupling of the electron
states. The interband coupling is realized only between the
states with the same wave vector, while the intraband coupling
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occurs only between the states laying in the reciprocal space
along a trajectory determined by the direction of electric field.
These trajectories can be identified by considering electron
dynamics in a reciprocal space in a constant electric field.
If an electron is initially at some point k of the reciprocal
space and a constant electric field is applied, then this electron
will drift along the direction of the electric field following
the acceleration theorem hdk/dt = eF, experiencing Bragg
scattering at the boundaries of the Brillouin zone. Then,
the corresponding electron trajectory in the reciprocal space
determines the line of coupled states.

The intraband-coupled states can be described by consid-
ering the states either in the first Brillouin zone only or in the
entire reciprocal space. In either case, the equivalence of the
points connected by a vector of reciprocal lattice should be
taken into account. Such equivalence determines the periodic
boundary conditions in the reciprocal space, from which the
energy spectrum can be obtained.

First, we assume that the electric field is parallel to the x
axis. In this case, the lines of coupled states are also parallel to
the x axis and are parametrized by the y component of the wave
vector k. In Fig. 2, the states coupled by this electric field are
shown in the first Brillouin zone [Fig. 2(a)] and in the extended
reciprocal space [Fig. 2(b)]. In the first Brillouin zone, we need
to take into account equivalence of the points connected by a
vector of the reciprocal lattice, e.g., points A; and A, are
equivalent. In Fig. 2, two sets of coupled states (lines) corre-
sponding to different values of k, are shown. If k, < 27/a,
then the typical line of coupled states is shown by the blue solid
line in Fig. 2. The solid blue points at the ends of the line are
coupled by a vector of reciprocal lattice, which determines
the periodic boundary conditions for the wave functions
$u(K) and ¢c(k), ie., dy(=27/av/3,k,) = ¢u(27/a~/3,ky)
and ¢.(—2m/a~/3,k,) = ¢.(2m/a~/3,k,). From these condi-
tions, the energy spectrum is obtained.

(a) b
ky“ F (b)
4r/3a
Al
\ / K
N7
. >
2N kx
/ \ !
o~

FIG. 2. (Color online) Lines of coupled states in reciprocal space.
The electron states of the reciprocal space, which are coupled by a
constant electric field parallel to the x axis, are shown by solid lines of
two different colors (red and blue), where different colors correspond
to two different values of k,. (a) The coupled states are shown in
the first Brillouin zone. The equivalent points (at the edges of the
Brillouin zone) are shown by the same type of points, i.e., solid red
points or open red points. The equivalent points are connected by a
vector of reciprocal lattice. (b) The coupled states are shown in the
whole reciprocal space. The first Brillouin zones, localized at different
points of the reciprocal lattice, are also shown. The equivalent points,
which are connected by a vector of reciprocal lattice, are shown by
the same type of points, e.g., two red points are equivalent.
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If ky, > 27 /3a, then the line of coupled states in the first
Brillouin zone consists of two line segments, which are shown
by red solid lines in Fig. 2(a). These line segments have two
sets of equivalent points: solid red points and open red points.
The points in each set are connected by the corresponding
vector of the reciprocal lattice.

In the extended reciprocal space, a part of which is shown
in Fig. 2(b), the lines, which describe the coupled states,
are straight lines for both k, < 27 /3a and k, > 27 /3a. For
the case k, > 27 /3a, the line of coupled states is located
in two Brillouin zones [see Fig. 2(b)]. For both the red and
blue lines, the end points are connected by the same vector
of reciprocal lattice G = (4 /a\/§,0), which makes the end
points equivalent and introduces periodic boundary conditions
for the system of equations (8) and (9).

III. RESULTS AND DISCUSSION

A. Wannier-Stark levels of a single band

Without interband coupling, i.e., for D = 0, Egs. (8) and
(9) become decoupled. For a single band, e.g., valence band,
Eq. (8) becomes

dey(K)
dky

where the electric field is parallel to the x axis. Solution of the
first-order differential equation (13) has the form

E¢y(k) = E,(K)¢y(K) +ieF , 13)

(k) =

1 i
— — | Etky + k
5o | = o (B0

ky
_ / E,,(k’,ky)dk/>:|, (14)
—ko

where we introduced a notation ky = 27/ (a\/g). From the
periodicity of the wave function ¢, (—ko,ky) = ¢, (ko,k,), we
obtain the WS energy spectrum as

EYS = E, (k) + hogn, (15)

where 7 is an integer, and the band offset E, o(ky) is

1 [h
Eyolky) = — / E (k' k,)dk' . (16)
2ko J, ’
The Bloch frequency wp in Eq. (15) is defined as
eF a7
=7—.
“E = Tk

The energy spectrum of Eq. (15) forms the WS ladder with
equidistant energy levels.

For the conduction band, the energy spectrum has a similar
form

EYS = E,(ky) + hogn, (18)

with the corresponding band offset

1 ko / /
E oky) = TR /k E (k' ,ky)dk'. (19)
—ko

For the tight-binding model, introduced above, there is a
relation E. o(ky) = —E, o(k,). The wave functions of the WS
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levels of the conduction band are

1 i
Ok) = — - — | Etk, + &
¢ (k) 2koexp[ eF(( + ko)

kx
— f Ec(k’,ky)dk’>i|. (20)
—ko

In the coordinate space, the WS levels are localized and the
integer index n determines the center of localization.

B. Wannier-Stark states of two-band model: Analytical results
1. Energy spectrum

The interband coupling, determined by dipole matrix
elements D(k), has a strong dependence on wave vector k.
Near the Dirac points (K and K’ points in Fig. 1), the
dipole matrix elements have sharp peaks. Dependence of
the dipole matrix element D, on the wave vector k, for
different values of k, is shown in Fig. 3. The K Dirac
point is at k = K = (K,,K,) = 2n/a)(1/+/3,1/3), ie., it
corresponds to k, = K, = (1/3)(2n/a) = ko/~/3 and k, =
K, = (27[/61\/3) = ko. Away from the Dirac point, i.e., when
|k_\,’ < K, [see Fig. 3(a)], the dipole matrix element |D,|
has a broad maximum near k. = ko. With increasing k,,
the maximum becomes more pronounced. Near the Dirac
point [see, e.g., the case of k, = 0.33(27/a) in Fig. 3(b)],
the dipole matrix element |D,| has a sharp peak at k, =
K = ko. Near this peak, the dipole matrix element D, (k,,k)
behaves as

3 13
Dy (ks ky) ﬁ[ 4 —52} Q1)
47 \

where §, = (k, — K,)/K, and &, = (k, — K,)/K,. Thus,
for a given k,, the maximum value of the dipole
matrix element is (3ea/4m)[K,/(k, — K,)], diverging at
ky — K,.

Although the shape of D, (k,,k,) as a function of k, depends
on the value of the y component of the wave vector k,, the
net interband coupling, which can be characterized by the

0 0 0
\ 0.3

-] ®@ (b)

-2 4 204
°if: 20 0.33
3 0.2

= -

Q 4 0.3 40

-6

T T T T -60 T T
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8
kxl(2ko) kx/(2ko)

FIG. 3. (Color online) Dipole matrix element D, as a function
of k, for different values of k,. The wave vector k, is measured
in units of 2ky, where ky = 2w /a\/g. The Dirac point is at k, = ko
and k, = ko /\/§ = (1/3)(27 /a). The numbers near the lines are the
values of k, in units of (277 /a). Panels (a) and (b) differ by the vertical
scale.
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integral
1 1o
_D)(Cnm)(ky) = _/ D, (ky,ky)dk,
e € Jky ’
ky=k
=& =%, 22)
2 kx=—ko 3

which does not depend on k. The interband transitional dipole
D" (ky) is determined by the Pancharatnam-Berry phase
(ox/ 2)|£‘;Iﬁ’ko [27,28], as characteristic of dielectric responses
of crystalline solids [29—-31]. This also suggests that Eq. (22),
as defined by the symmetry of the system, is more general than
the tight-binding model, in which the specific calculations are
made.

A strong dependence of the dipole matrix element on k,
near the Dirac point, which is illustrated in Fig. 3 and is
supported by Eq. (21), can be approximated by the § function,
ie.,

Dy (ky,ky) = eAod(ky — ko). (23)

Here, strength Ao of the § function is determined by the
condition that the net dipole coupling in Egs. (22) and (23)
is the same, which yields Ay = —n/3.

For the §-function profile of the dipole matrix elements,
the system of equations (8) and (9) can be solved analytically.
Such solution can be obtained as follows. We are looking
for a solution of the system of equations (8) and (9) within
a line segment 0 < k, < 2ko with the periodical boundary
conditions at the ends. (Here, it is convenient to consider inter-
val 0 < k, < 2k( and not interval —kog < k, < kg introduced
before.) The dipole matrix element is nonzero only at k, = k.
Then, for0 < k, < kgand kg < k, < 2k, thereis no interband
coupling between the valence and conduction bands. Within
these intervals, the general solution of the system (8) and (9)
acquires the form for 0 < &, < ko:

: ky
bo(K) = A; exp [ _ eLF(Ek _ /0 Ev(k/,ky)dk/)}, (24)

. k,
do(k) = Asexp [ - #(Ekx _ / Ec(kgky)dk)], 25)
0

and the same form with different coefficients for ky < k, <
2k02

. ke
$o(K) = B, exp[— j(Ek - / Ev(k’,k,v)dk/)}, (26)
0

: ky
6.(k) = By exp [ _ eLF(Ek _ /0 Ec(k/,ky)dk/ﬂ, 27)

where Ay, A,, By, and B, are constants.

At point k, = ko, the S-function dependence of dipole
matrix element (23) introduces the following relation between
the values of the wave function at k, = ko — 0 and k, =
ko + O:

Dulig+0 = —idclky—0 Sin Ag + @y lg,—0 cOs Ag,  (28)

Delko+0 = Gelig—0 €OS Ag — iy |50 Sin Ag. (29)
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Thus, the §-function coupling results in rotation of a pseu-
dospin, which is associated with two components of the wave
function, by a finite angle Ay.

Substituting expressions (24)—(27) into relations (28) and
(29) and taking into account the periodic boundary conditions,
we obtain an equation for the energy spectrum of the WS states

2ko (Ao) 2ko (k,) (30)
cos | — = cos cos | —E. ,
eF 0 eF 0
where we took into account relation E. o = —E, o, which is
valid within the tight-binding model introduced above. The
solution of Eq. (30) is parametrized by an integer number #; it

describes the WS-state energies and has the form

F 2k
E® = :I:;—k0 { cos™! [cos Ag cos (e—;Ec,o(ky))}i‘z””}'
(€Y}

Here, the + signs correspond to the the conduction (c) and
valence (b) bands, respectively.

It is convenient to rewrite Eq. (31) in dimensionless
energy variables normalized to the Bloch frequency ¢ =
E® [hog = EPlko/(meF)] and e = Ecoky)/hwg =
Ecolko/(meF)] as

e® = +(27) " cosT![cos AgcosRrec o) +n.  (32)

The corresponding dimensionless energy spectrum is
shown in Fig. 4(a). The anticrossing points of the energy levels
can be clearly identified. These points are the anticrossings
of the WS ladders of the conduction and valence bands [see
Fig. 4(b)] corresponding to the interband Zener tunneling [2].
This interband coupling (Zener tunneling) makes the initial
WS states of isolated bands to be nonstationary (metastable)
but causes the formation of new, stationary states of the coupled
bands that we consider in this paper.

The anticrossing points can be labeled by an integer number
I =1,2,..., which has meaning of the number of unit cells
through which the Zener tunneling occurs. In dimensionless
variables, the positions of the anticrossing points are

ey =1/2, (33)
or, in terms of the electric field, the anticrossing points are at
2k,

FO=22F . (34)
eml

The positions of the anticrossing points can be also
estimated from the expressions (15) and (18) for the energies
of the WS states of uncoupled conduction and valence bands.
For uncoupled bands, the anticrossing points are determined
by an equation EYYS = E\S _ from which one can derive the

v,y
positions of the anticrossing points at
2k,
o _ <Ko
uncoupled el EC»O’ (35)

where [ = n, — n,. Comparing exact expression (34) with
approximation (35), we can conclude that the interband
coupling for k, in the vicinity of the Dirac point eliminates
field-induced renormalization of an anticrossing position

F(l) — F(l)

uncoupled*

(36)
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FIG. 4. (Color online) (a) Dimensionless energies ¢ of the WS
states, calculated from Eq. (32), as a function of dimensionless
parameter &, for different values of integer number n. Parameter
Ao is Ap = 0.6. Different types of anticrossing points are labeled by
integer parameter /. With increasing electric field, the last anticrossing
point corresponds to / = 1 and occurs at ¢, = 7. (b) The energies
E® of the WS states, calculated from Eq. (31), as a function of
Bloch frequency hwp, which is proportional to electric field. The
anticrossing points, corresponding to / = 1 and 2, are marked by red
lines. The parameter Ay is Ag = 0.6, and E. o = 1 eV.

At the same time, for k, far from the Dirac point, the interband
coupling shifts the anticrossing points to the higher values
of electric field similar to ordinary 3d solids [16] (see also
Sec. 11 C).

In the dimensionless units, the anticrossing gaps are the
same for all anticrossing points [cf. Fig. 4(a)]. The value of
the dimensionless gap A, /hwp can be found as the difference

between the corresponding energy levels A,/hwp = 8(1_> —

8(()+), calculated at a point ¢, o = 1/2. This way, we find

Ay /hwp = Ao/7. (37)

In the original units, the anticrossing gap corresponding to the
anticrossing point with index / [see Eq. (33)] takes the form

2A0
AD = — Eeo. (38)
Such weak dependence of the anticrossing gap on index / is
a unique feature of graphene’s unconventional relativisticlike
low-energy dispersion relation. This behavior is quite different
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from that of conventional solids, e.g., dielectrics, for which the
anticrossing gaps are exponentially decreasing with /.

The physical meaning of / is that the value of al is the
distance between the localized WS states of the conduction
and valence bands. Then, the anticrossing gap with index / is
determined by a coupling of the WS states of the conduction
and valence bands separated by spatial distance al and is
equal to the rate of Zener tunneling [2] between these bands
through / unit cells in space. For graphene, such coupling
has a long range in the direct space due to the strongly
localized §-function profile of the dipole matrix elements in
the reciprocal space. Such a long-range tunneling results in a
weak dependence of the anticrossing gap on distance /.

The §-function profile of the dipole matrix elements in
graphene is an approximation, used above to obtain analytical
solution of the problem. The exact dipole matrix element D(k)
has a finite small width wp in the reciprocal space (see Fig. 3),
where wp depends on ky. Such a finite width introduces a
cutoff both in the long-range coupling of the WS states of
different bands and in the weak dependence of the anticrossing
gap on [. Namely, the anticrossing gap Ag) has the weak
I=! dependence on [ for | <1. = (wpa)~!; for [ > I, the
anticrossing gap becomes exponentially small with /.

Since the dimensionless parameter ¢, o is inversely propor-
tional to electric field, then in the energy spectrum, considered
as a function of electric field, the anticrossing point with index
I = 1 is the last anticrossing point [see Fig. 4(a)]. In Fig. 4(b),
the energy spectrum, calculated from Eq. (31), is shown as a
function of electric field. The anticrossing points with indexes
! =1 and 2 are marked. The corresponding anticrossing gaps
are given by Eq. (38). The last anticrossing points with index
I = 1 has the largest anticrossing gap A = 2A0E,o/7.

For graphene, within the tight-binding model introduced
above, parameter Ay, calculated at k, =k, o = 27 /3a, is
Aol = m/3 ~ 1.05. For this value of k, =k, o, the energy
dispersion is

V3ak, ) (39)

4

Then, the band offset of the conduction band, defined by
Eq. (19), is

Eolkeky o) = —2y Cos(

4
Eco(ky0) = _?)/ ~ 3.86 eV. (40)

For these values of Ao and E., we obtain from Egs. (34)
and (38) the positions of the anticrossing points and the
corresponding anticrossing gaps

FO _ 8koly | ~ 3.59

=2 V/A, 41
em?l I / “1)

8ly| 254
AD = =~ = eV. 42
T A B “2)

The anticrossing at [ =1 is the last one occurring at the
maximum electric field of 3.59 V/A. The anticrossing gap
at this point is 2.54 eV.

2. Wave functions

The wave functions of the WS states of the two-band
graphene model have two components ¢, (k) and ¢.(k), which
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give the amplitudes for an electron to be in the valence and
conduction bands, respectively. These functions ¢,(k) and
¢.(K) are determined by Eqgs. (24)—-(27) where the unknown
coefficients A, A, By, and B; can be found from the boundary
conditions (28) and (29). At a given energy of the WS state E,
they have the following form:

_i (%o
Ay = A exp {_l/ [E(K k) — E]dk’}, (43)
eF 0 .
A — A A
B, = iw, (44)
sin(Ag)
Bz = 31 COS(A()) — iA] SiIl(A()). (45)

Here, coefficient A; can be found from the normalization
condition. The wave functions ¢,(k),¢.(K) determine the
electron amplitudes in the reciprocal space. The corresponding
wave functions in the direct coordinate space are determined
by a Fourier transform

Gu(x,ky) = / dx ¢y (ky ke, (46)

Fo(x.k) = / dx plhe ke, @)

where we consider the spatial dependence of the wave function
along axis x only, i.e., along the direction of the electric field.
In this case, the y component of the wave vector &, should be
considered as a parameter.

Without interband coupling, i.e., for Ag = 0, and for k, =
ky.0, the WS wave functions for a given band, e.g., conduction
band, can be expressed in terms of the Bessel functions

7 4
$e(x,ky) x Jj%“(x_ﬁﬂ(hn_wB), (48)

where J,(z) is the Bessel function of order n, and the Bloch
frequency is given by Eq. (17). Such analytical expression
is obtained for energy dispersion (39). Wave function (48) is
localized in the x space at a coordinate pointx = E /e F, which
is proportional to the energy of the WS state.

The interband coupling A results in mixing of the wave
functions of different (conduction and valence) bands. The
mixing is strongest at the anticrossing points, and the resulting
WS wave functions are also localized similar to single-
band approximation (48). Such wave functions are given by
Eqs. (43)-(47).

To illustrate the interband mixing introduced by an electric
field, we show in Fig. 5 the conduction and valence band
probability densities for the WS wave functions, i.e., p,(x) =
|(;~5v()c,ky)|2 and p.(x) = |q§c(x,ky)|2. The results are shown
for one of the WS energy levels for a given electric field.
The electric fields F = 1.8 and 3.6 V/A are near [ =2
and 1 anticrossing points, respectively. In these cases, the
interband mixing is strong, and the electron densities in the
conduction and valence bands are comparable [see Figs. 5(a)
and 5(c)]. The spatial separation between the maxima of p,(x)
and p.(x) is ~la. Thus, for F = 1.8 V/A, ie., | =2, the
distance between the maxima of p, and p. is ~2a ~4.8 A,
while for F = 3.6 V/A, i.e., | = 1, the distance is ~a ~2.4 A.
For electric field F = 2.4 V/A, which is between / = 1 and
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FIG. 5. (Color online) Electron densities p,(x) and p.(x) in the
conduction and valence bands of a given WS state. The electric field
is(a) F=1.8 V/A, (b) F = 2.4 V/A, (¢) F = 3.6 V/A. The fields
1.8 and 3.6 V/A corresponds to / = 2 and 1 anticrossing points. The
y component of the wave vector is ky, = ky o.

2 anticrossing points, the interband mixing is weak. In this
case, only one component (in our case only the valence band
component p,) is strong [see Fig. 5(b)].

In both cases, i.e., at the anticrossing points and away from
them, the wave functions are localized in the x space. The
localization length depends on the electric field. The points,
at which the WS wave functions are localized, depend on the
energy of the WS states. In Fig. 6, the total electron density,
defined as p(x) = py,(x) + pc(x), is shown for different WS
states at electric field F = 3.6 V /A, which correspondto/ = 1
anticrossing point. With changing the energy of the WS state,
the electron density distribution is shifted as a whole along the
X axis.

C. Wannier-Stark states of two-band model: Numerical results

In the previous section, analytical results for the WS spectra
of the tight-binding model were obtained in the case of the
8-function dipole matrix elements. Such strong dependence of

PHYSICAL REVIEW B 90, 085313 (2014)

F=3.6 V/A

X (nm)

FIG. 6. (Color online) Total electron density p(x) = p,(x)+
pe(x) of three WS states. The electric field is F = 3.6 V/A,
corresponding to the / = 1 anticrossing point. The y component of
the wave vector is k,, = k, . The curves are displaced vertically for
clarity.

the dipole matrix element on the wave vector occurs near the
Dirac points. Away from the Dirac points, the dipole matrix
element |D,| as a function of the wave vector has a broad
peak. In such a case, the WS energy spectra can be obtained
numerically.

It is convenient to solve the system of the eigenvalue
equations (8) and (9) by expanding functions ¢, (k) and ¢.(k)
in terms of the WS wave function of individual bands, Eqgs. (14)
and (20), calculated without interband coupling. Thus,

pu(k) = > A0 k), (49)
¢e(k) = Y BipO)(K), (50)

where index n labels the WS states [see Egs. (15) and (18)],
A, and B, are the corresponding expansion coefficients.
Substituting expressions (49) and (50) into Eqgs. (8) and (9),
we obtain the system of eigenvalue equations on expansion
coefficients A, and B,:

EA,, - EynsAn + FZDntn» (51)

n

EB, = EYSB,+ F ) _Dj, A, (52)

where D,,,,, are dipole matrix elements, calculated between the
WS wave functions of individual bands,

Dun = (6] D, 10|¢%)
1 [h i ks
= dk, D, (ky,k,)ex [—(2/ E (k' k,)dk'
2ko )4, WEPF\T L, Y
+(EXS — EYS) (ke + ko)>]. (53)

In Fig. 7, the energy spectra of a finite-size system of
graphene, calculated numerically from the system of equations
(49) and (50), are shown for different values of the y
component of the wave vector k,. At k, = 0 [see Fig. 7(a)],
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FIG. 7. (Color online) Energy spectra of graphene in a constant
electric field, parallel to the x axis. The spectra are calculated
numerically for a finite-size system for two values of k,: (a) k, =0
and (b) k, = 0.32(27/a). The number of states in each band is 100.
The anticrossing points corresponding to / = 1 and 2 are marked by
red lines.

the system is far away from the Dirac points. In this case, the
dipole matrix element as a function of k, has a broad peak [see
Fig. 3]. For k, = 0.32(27/a) [see Fig. 7(b)], the system is
close to the Dirac point with the dipole matrix element having
a sharp narrow peak. In this case, the values of the anticrossing
gaps and the positions of the anticrossing points are close to
the analytical expressions (41) and (42), obtained in the model
with §-function profile for the dipole matrix element.

The data, shown in Fig. 7, illustrate strong depen-
dence of the spectra on the value of k,, ie., on
the shape of the function D, (k,). With increasing k, — K,
i.e., when the peak in D, (k,) becomes sharp, the anticrossing
points move to smaller values of electric field and the
anticrossing gaps become smaller.

In Fig. 8, the anticrossing gaps and the positions of the
anticrossing points are shown as a function of k,, for/ = 1 and
2 anticrossing points. A general trend is that with increasing
ky, both the anticrossing gaps A{) and the electric fields F at
which the anticrossing points are observed, are decreasing. The
arrows in Fig. 7 show the analytical values of the anticrossing
gaps and the positions of the anticrossing points, obtained
from Eqgs. (41) and (42). These numbers are close to the
corresponding numerical values at k, ~ K, = (1/3)(2n/a),
i.e., near the Dirac point (see Fig. 7).

D. Wannier-Stark states of two-band model: Two Dirac points

By changing the direction of electric field, one can realize
a situation when along a line of coupled states there are two

PHYSICAL REVIEW B 90, 085313 (2014)

00 01 02 03 00 01 02 03
ky (2m/a) ky 2m/a)

FIG. 8. (Color online) (a) Anticrossing gaps, calculated for the
! =2 and 1 anticrossing points, are shown as a function of the y
component of the wave vector k,. (b) The positions of / =1 and 2
anticrossing points are shown as a function of k,. The electric field is
parallel to the x axis.

Dirac points. For graphene, this happens for a line shown in
Fig. 9(a), i.e., when the angle between the direction of the
electric field and axis x is /6. Then, for the line shown in
Fig. 9, we introduce one-dimensional wave vector x along
the direction of electric field and write the dipole matrix
element in terms of two & functions, localized at the Dirac
points

D (k) = eAi16(k — k1) + eArb(k — Kk3), (54)

where «; and k, are the coordinates of the Dirac points
along the line of coupled states. The wave vector x changes
from 0 to ko = (27 /a,), where a, = 2w /Ky determines
the period of the system along the direction of electric
field.

We follow the same steps as in the case of one Dirac
point (see Sec. IIIB). Namely, we introduce three re-
gions 0 < k < Ky, k| < k < k7, and ky < k < kp. In each
region, the conduction and valence bands become decoupled
and the wave functions have the form of Egs. (24) and (25). At
the boundary between the regions, i.e., at points k = ;| and
k2, the boundary conditions have the form of Egs. (28) and
(29). Combining all these equations and taking into account
the periodic boundary conditions at points ¥k = 0 and «y,
we obtain the following energy spectra of the coupled WS
states:

F .
Ef,i) = :I:e—{ cos™! [cos A1 cos A, cos <ﬁEC,O>
Ko eF

— sin A sin A, cos (K—;aﬁuo)} + Znn}. (55)
e

Here, E~C,0 is defined in terms of the linear integral over the
line of coupled states (see Fig. 9)

. 1 [f*o
EC,O =
Ko Jo

E (k)dk. (56)

The coefficient 0 < o < 1 in Eq. (55) is defined by the
following relation

2 (e
a=1-—= / E.(k)dk. (57)
KOEC.O K1
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FIG. 9. (Color online) (a) Line of coupled states in the reciprocal
space is shown by blue solid line. Along this line there are two
inequivalent Dirac points K and K’. The direction of electric field is
also shown. (b) Dimensionless energies ' of WS states, calculated
from Eq. (58), are shown as a function of dimensionless parameter
&0 for different values of integer number n. The parameters A; =
Ay = Ag and o are Ag = 0.6 and o = 0.7. (c) The energies E
of the WS states, calculated from Eq. (55), are shown as a function
of Bloch frequency hwg, which is proportional to electric field. The
anticrossing points, corresponding to / = 1 and 2, are marked by red
lines. The parameters are Ay = 0.6, = 0.7, and E.o = 1 eV.

In dimensionless variables e® = E®(ip/eF) and .9 =
E.o(ko/eF), Eq. (55) becomes

+ -1 =
z-:fl ) = :I:{ cos |:cos AjcosAycosé.

— sin A sin A, cos(oeécyo):| +2nn } . (58)

In Fig. 9(b), the dimensionless WS energy spectrum (58)
is shown for parameters A; = A, = A9 = 0.6 and o = 0.7,
which correspond to graphene. A specific feature of this
spectrum is a nonmonotonic dependence of the anticross-
ing gaps on the value of the dimensionless band offset
&.0. These gaps have both large and very small values.

PHYSICAL REVIEW B 90, 085313 (2014)

The positions of the anticrossing points are also irregular.
The corresponding energy spectrum in the original units is
shown in Fig. 9(c) as a function of electric field F. The
anticrossing gaps have nonmonotonic dependence on F. For
example, the anticrossing gap at [ =3 is larger than the
gap at [ = 2. This behavior is different from the behavior
of the anticrossing gaps of the WS spectrum for systems
where the dipole matrix elements are almost constant [16]
or have a single peak as a function of the wave vector (see
Sec. III B).

IV. CONCLUSION

Within a single- (either conduction or valence) band
model, the energy spectrum of an electron in graphene in
a constant external field has a WS ladder structure with
energy levels separated by the Bloch frequency, which is
proportional to both the electric field and the lattice period
of graphene crystal structure in the direction of electric field.
In a two-band model, which is introduced above within
the tight-binding nearest-neighbor approximation, a constant
electric field results in mixing of the conduction and valence
bands. As a result of such mixing, the energy spectrum of
graphene as a function of electric field shows anticrossing
points with the corresponding anticrossing gaps. These gaps
also indicate that a constant electric field opens a gap in the
electron energy spectrum of graphene. This is understandable
because it reduces symmetry of the system by lifting the
equivalence (degeneracy) of the two constituent triangular
sublattices. The magnitudes of the gaps depend on the electric
field.

The strength of the band mixing in an external electric field
is determined by the magnitude of the interband dipole matrix
element. The net (integral) interband dipole matrix element has
avalue of —esr /3 universally determined by the Pancharatnam-
Berry phase.

In graphene, this interband dipole matrix element has
unique dependence on the electron wave vector. Namely, at
the Dirac points, it has sharp peaks, i.e., in the reciprocal
space, the interband coupling is strong near the Dirac points
only. In this case, approximating such a strong dependence
of the dipole matrix element on the wave vector by the &
function, one can find an analytical expression for the WS
energy spectrum. Such analytical solution predicts both the
positions of the anticrossing points and the corresponding
anticrossing gaps. As a function of inverse electric field, the
anticrossing points are equidistant. In the dimensionless units
(relative to the Bloch frequency), the anticrossing gaps have
the same value at all anticrossing points. Thus, in the original
energy units, the anticrossing gaps are proportional to the
electric field at the corresponding anticrossing points and, for
graphene, are Ag) = (2.54/1) (eV), where [ = 1,2, ... is an
integer. Physically, such an anticrossing gap (divided by h)
is the rate of the Zener tunneling through [ unit cells that
transfers an electron in a localized WS state from the valence
to the conduction band. The largest anticrossing gap ~2.54 eV
corresponds to the anticrossing point / = 1 at the electric field
~3.59 V/;X. The weak dependence o/~! of the anticrossing
gaps on parameter / is a unique property of graphene and is
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due to highly nonuniform, singular profile of the dipole matrix
element.

Such high fields, F 2 1 V/A, can be generated only by
laser pulses in the visible/near-infrared [17,18] or terahertz
[11] spectral regions. Graphene in a time-dependent electric
field (see, for example, Ref. [32]), when the electron dynamics
is described in terms of the passage of the anticrossing
points, the anticrossing gaps determine the characteristic time
T =h/ Ag) = 0.26/ fs, which characterizes adiabaticity of the
dynamics. Namely, if time 7, of passage of an anticrossing
point, which is also the characteristic time of variation of
electric field, is much larger than 7;, 7, >> 1, then the electron
dynamics is adiabatic. For example, if 7; = 1 fs, then the
passages of anticrossing points / =1 and 2, which have
the characteristic times 7; = 0.25 and 0.51 fs, are adiabatic,
while the passages of the points / > 2 are nonadiabatic
or even diabatic. It is evident that no matter what is the
frequency range, from visible to terahertz, there always will be
several anticrossings with near-resonant frequencies violating
adiabaticity. Thus, the rapid adiabatic passage [32] is not
possible in graphene; also, Rabi oscillations will be dephased.
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APPENDIX

We express the general solution of the Schrodinger equa-
tions (1) and (2) in the form (7), i.e., in the basis of
eigenfunctions of field-free Hamiltonian H,. Substituting
expression (7) for the wave function W(r) into the Schrodinger
equations (1) and (2), we obtain

EY  [$k) () + ¢ (k)W (r)]

ki
= (Ho + eFr) Y _ [¢ (k)W (1) + ¢k W ()], (AD)

ki

We multiply both sides of Eq. (A1) by W{”*(r) and then
integrate it by r. Taking into account that lIJl((v)(r) are
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eigenfunctions of Hamiltonian Hj, we obtain

E¢y(k) = E,(K)¢y (k)

+e ) ¢uki) / dr U () (Frw (r)
k;

+e) gk / dr B @ FDY (). (A2)
ki

Substituting explicit expression (6) for \Pli”) (r), we rewrite the
second term in the right-hand side of Eq. (A2) as follows:

e Yoo [ drwd e@Enelm)
k;
= g ;@(kl (1 + '@ on)y / dr(Fr)e/ ™%

A ad
= quv(kl)(l + e’<¢k—%)>< - iFa—kl>3(k ~ k)

3¢>u( ) 3§0k

=ie + ¢u( F—= (A3)

where in the last line, in the sum (integral) over k;, we use
integration by parts The final expression contains an additional
term 5¢,(K)F ;;f, which is not included in the system of
equations (8) and (9) since this term can be eliminated by
substitution ¢, (k) — ¢,(K)e/?% and does not affect the
energy spectrum of the system.

The third term in the right-hand side of Eq. (A2) can be

rewritten as

e (k) f dr W (1) (Fr) 9 ()
ki
- g ; Be(l)(—1 + @) / dr(Fr)e™
) a
=2 ; e(k)(—1+ el(“’kw"‘))< - iFa—kl)Mk ~ k)

_¢ 0P _
5% (OF— = = FD(R)p.(K), (Ad)

where the term proportional to 9:® s zero due to orthogo-

nality of the conduction and valence band free-field functions:

(—1 + @ 9))5(k —kp) =0 (A5)

Combining Egs. (A2)—(A4), we obtain Eq. (8). Similarly,
multiplying Eq. (A1) by W{”*(r) and integrating it by r, we
can derive Eq. (9).
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