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Loss compensation by gain and spasing
BY MARK I. STOCKMAN*

Department of Physics and Astronomy, Georgia State University,
Atlanta, GA 30303, USA

We present a theory of the effective dielectric response of metamaterials containing
gain. We demonstrate analytically that the conditions of spaser generation and the
full loss compensation in a dense resonant plasmonic-gain metamaterial are identical.
Consequently, attempting the full compensation or overcompensation of losses by gain
will lead to an instability and a transition to a spaser state. This will limit (clamp)
the inversion and eliminate the net gain. As a result, the full loss compensation
(overcompensation) in such metamaterials is impossible. The criterion of the loss
overcompensation, leading to the instability and spasing, is given in an analytical
and a universal (independent from system geometry) form. Comparison with existing
experiments is carried out.
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1. Introduction

Nanoplasmonics studies and employs optical fields that are localized on the
nanoscale in the vicinity of metal nanostructures [1]. It is presently a thriving,
active, and very rapidly developing field with a number of exciting physical effects
and many practical applications based on the unique nanolocalization properties
of plasmonic fields [2,3].

A problem for many applications of plasmonics is posed by losses inherent in
the interaction of light with metals. There are several ways to bypass, mitigate or
overcome the detrimental effects of these losses, which we briefly discuss below.

— The most common approach consists of employing effects where the losses
are not fundamentally important such as surface plasmon polariton (SPP)
propagation used in sensing [2], ultramicroscopy [4,5] and solar energy
conversion [6]. For realistic losses, there are other effects and applications
that are pronounced and useful, in particular, sensing based on surface
plasmon (SP) resonances and surface-enhanced Raman scattering [2,7–10].

— Another promising idea is to use superconducting plasmonics to
dramatically reduce losses [11–14]. However, this is only applicable for
frequencies below the superconducting gap, i.e. in the terahertz region.
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Loss compensation by gain and spasing 3511

— Yet another promising direction is using highly doped semiconductors
where the ohmic losses can be significantly lower owing to much lower
free carrier concentrations [15]. However, a problem with this approach
may lie in the fact that the usefulness of plasmonic modes depends not on
the loss per se but on the quality factor Q, which for doped semiconductors
may not be higher than for the plasmonic metals.

— One of the promising alternative approaches to low-loss plasmonic
metamaterials is using gain to compensate the dielectric (ohmic)
losses [3,16]. In this case, the gain medium is included into the
metamaterials. It surrounds the metal plasmonic component in the
same manner as in spasers (see below). The idea is that the gain
will provide quantum amplification compensating the loss in the
metamaterial.

This paper is devoted to the theory of the loss compensation in plasmonic
metamaterials using gain. The principles of the loss compensation are based
on the idea of the spaser [17–19]. The spaser (SP amplification by stimulated
emission of radiation) has been introduced in Bergman & Stockman [17] as a
nanoplasmonic counterpart of the laser.

The spaser is built of a metal nanoplasmonic nanoparticle, which plays the
role of the resonator (‘cavity’) of the laser, and a nanoscale gain medium (dye
molecules, quantum dots (QDs), etc.) where the population inversion is created
optically or electrically. When the spaser’s gain medium is excited (optically or
electrically), radiationless transfer of energy from the electron transitions in the
gain medium to SP modes of the metal nanoparticle takes place. The local field of
the SPs periodically perturbs the gain medium causing the stimulated emission
of further SPs into the same mode. This is the mechanism of the quantum
amplification in the spaser.

If this spaser amplification overcomes the loss in its metal core, the initial
state of the system loses its stability, and a new, spasing state appears with
a coherent SP population whose phase is established owing to a spontaneous
symmetry breaking [20]. The spaser is a nanoscopic generator of coherent local
optical fields and their ultrafast nanoamplifier. The amplification principle of the
spaser can be used to compensate the dielectric and other losses in metamaterials.

After the spaser was introduced, its ideas and implementations have been very
actively developed experimentally. A true nanoscopic spaser consisting of a gold
nanosphere core surrounded by a dielectric gain shell containing a laser dye has
been demonstrated [21].

Apart from the spaser based on nanolocalized SPs, there also are known
the so-called nanolasers. A nanolaser is actually a SPP-based spaser. Such a
nanolaser is based on the amplification of the propagating SPPs owing to their
stimulated emission by the gain medium adjacent to the SPP waveguide. The
nanolasers (SPP spasers) have been demonstrated with one-dimensional [22], two-
dimensional [23] and three-dimensional [24] confinements. The latter actually
differs from the original SP spaser only by the size of its eigenmodes, which
is presently of the order of a half wavelength (approx. l/2) laterally and deep
nanoscopic transversely [24]. This nanolaser is able to generate in a single mode
at ambient temperature.
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3512 M. I. Stockman

Different from the SPP spasers, the so-called lasing spaser has been introduced
[25]. This is a nanofilm (planar metamaterial also known as a metasurface)
containing plasmonic resonators and the gain medium. The pre-generation
narrowing of the resonant line in the lasing spaser has been demonstrated [26].

Amplification of long-range SPPs in a gold strip waveguide in the proximity
of a pumped dye solution has been demonstrated [27]. Amplified spontaneous
emission of SPPs has been observed in gold nanofilms over an amplifying medium
containing PbS QDs, where the reduction of the SPP propagation loss by up
to 30 per cent has taken place [28]. In a metamaterial consisting of split-ring
resonators coupled with an optically pumped InGaAs quantum well, a reduction
of the transmission loss by approximately 8 per cent has been observed [29]. The
full compensation and overcompensation of the optical transmission loss for a
fishnet metamaterial containing a pumped dye dispersed in a polymer matrix
have been described [30]. This experiment was later stated to be in agreement
with a theory based on the Maxwell–Bloch equations [31].

In this paper, we show that the full compensation or overcompensation of
the optical loss in a dense resonant gain metamaterial leads to an instability
that is resolved by its spasing (i.e. by becoming a spaser). We further show
analytically that the conditions of the complete gain compensation and the
threshold condition of spasing [20] are identical. Thus, the full compensation
(overcompensation) of the loss by gain in such a metamaterial will cause spasing.
This spasing limits (clamps) the gain [20] and, consequently, inhibits the complete
loss compensation (overcompensation) at any frequency. Partially, a brief version
of this theory, without the derivations and most details and discussions presented
in this paper, has been published previously [32,33].

2. Permittivity of nanoplasmonic metamaterial

We will consider, for certainty, an isotropic and uniform metamaterial (which
is defined as large with respect to the wavelength, a periodic system—
plasmonic crystal—whose unit cell is much smaller than the reduced wavelength
of the propagating electromagnetic waves) that, by definition, in a range
of frequencies u can be described by the effective permittivity 3̄(u) and
permeability m̄(u). We will concentrate below on the loss compensation for the
optical electric responses; similar consideration with identical conclusions for
the optical magnetic responses is straightforward. Consider a small piece of
the metamaterial with size much greater that the unit cell but much smaller
than the reduced wavelength 7, which is a metamaterial itself. Let us subject
this metamaterial to a uniform electric field E(u) = −Vf(r, u) oscillating with
frequency u. Note that E(u) is the amplitude of the macroscopic electric
field inside the metamaterial. We will denote the local field at a point r
inside this metamaterial as e(r, u) = −V4(r, u). We assume standard boundary
conditions

4(r, u) = f(r, u), (2.1)

for r belonging to the surface S of the volume under consideration.
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Loss compensation by gain and spasing 3513

To present our results in a closed form, we first derive a homogenization formula
used in Stockman et al. [34] (see also references cited therein). By definition, the
electric displacement in the volume V of the metamaterial is given by a formula

D(r, u) = 1
V

∫
V

3(r, u)e(r, u) dV , (2.2)

where 3(r, u) is a position-dependent permittivity. This can be identically
expressed (by multiplying and dividing by the macroscopic field E∗) and, using
the Gauss theorem, transformed to a surface integral as

D = 1
VE∗(u)

∫
V

E∗(u)3(r, u)e(r, u) dV

= 1
VE∗(u)

∫
S

f∗(r, u)3(r, u)e(r, u) dS, (2.3)

where we took into account Maxwell equation V[3(r, u)e(r, u)] = 0. Now, using
the boundary conditions of equation (2.1), we can express it and transform back
to the surface integral as

D = 1
VE∗(u)

∫
S

4∗(r)3(r, u)e(r, u) dS

= 1
VE∗(u)

∫
V

3(r, u)|e(r, u)|2 dV . (2.4)

From the last equality, we obtain the required homogenization formula as an
expression for the effective permittivity of the metamaterial:

3̄(u) = 1
V |E(u)|2

∫
V

3(r, u)|e(r, u)|2 dV . (2.5)

3. Plasmonic eigenmodes and effective resonant permittivity of metamaterial

Here, for the sake of convenience, we briefly reiterate the quasi-static spectral
theory of Stockman et al. [35–37]. The quasi-static eigenmode equation is

V[q(r)V4n(r)] = snV24n(r), (3.1)

where 4n(r) is an eigenfunction, sn is the corresponding eigenvalue and q(r) is the
characteristic function that is equal to 1 inside the metal and 0 otherwise. The
homogeneous Dirichlet–Neumann boundary conditions are implied.

From equation (3.1) one can easily find a relation

sn =
∫

V q(r)|En(r)|2 dV∫
V |En(r)|2 dV

, (3.2)

where En(r) = −V4n(r) is the eigenmode’s field. We will assume that this
eigenmode field is normalized according to∫

V
|En(r)|2 dV = 1. (3.3)
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This condition is arbitrary but standard and convenient.
From equation (3.1) it follows, in particular, that

1 ≥ sn ≥ 0. (3.4)

The resonant frequency, u = un , is defined by the equality

sn = Re s(un), s(u) ≡ 3h(u)
3h(u) − 3m(u)

, (3.5)

where s(u) is Bergman’s spectral parameter, 3m(u) is the permittivity of the metal
and 3h(u) is that of the surrounding host with the gain chromophore centres.

The local field inside the nanostructured volume V of the metamaterial is given
by the eigenmode expansion

e(r, u) = E(u) −
∑

n

an

s(u) − sn
En(r)

where an = E(u)
∫
V

q(r)En(r) dV .

⎫⎪⎪⎬
⎪⎪⎭

(3.6)

In the resonance, u = un , only one term in equation (3.6) dominates, and it
becomes

e(r, u) = E(u) + i
an

Im s(un)
En(r). (3.7)

The first term in this equation corresponds to the mean (macroscopic) field and
the second one describes the deviations of the local field from the mean field
containing contributions of the hot spots [38], etc. The mean root square ratio of
the second term (local field) to the first (mean field) is estimated as

∼ f
Im s(un)

= fQ
sn(1 − sn)

, (3.8)

where we took into account that, in accord with equation (3.3), En ∼ V −1/2, and

f = 1
V

∫
V

q(r) dV and Q = −Re 3m(u)
Im 3m(u)

; (3.9)

f is the metal fill factor of the system, and Q is the plasmonic quality factor.
Deriving expression (3.8), we have also taken into account an equality Im s(un) =
sn(1 − sn)/Q, which is valid in the assumed limit of a high quality factor, Q � 1
(see the next paragraph).

For a good plasmonic metal, Q � 1 (e.g. Q ∼ 10–100 for silver in the entire
optical region). For most metal-containing metamaterials, the metal fill factor
is not small, typically f � 0.5. Thus, keeping equation (3.4) in mind, it is very
realistic to assume the following condition:

fQ
sn(1 − sn)

� 1. (3.10)
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If so, the second (local) term of the field (3.7) dominates and, with a good
precision, the local field is the eigenmode’s field,

e(r, u) = i
an

Im s(un)
En(r). (3.11)

Substituting equation (3.11) into equation (2.5), we obtain a homogenization
formula

3̄(u) = bn

∫
V

3(r, u)[En(r)]2 dV , (3.12)

where bn > 0 is a real positive coefficient whose specific value is not needed for
the purposes of this paper but is given below for the sake of completeness:

bn = 1
V

(
Q

∫
V q(r)En(r) dV
sn(1 − sn)

)2

. (3.13)

Using equations (3.12) and (3.2) and (3.3), it is straightforward to show that
the effective permittivity (3.12) simplifies exactly to

3̄(u) = bn[sn3m(u) + (1 − sn)3h(u)]. (3.14)

4. Conditions of loss compensation by gain and spasing

In the case of the full inversion (maximum gain) and in the exact resonance, the
host medium permittivity acquires the imaginary part describing the stimulated
emission as given by the standard expression

3h(u) = 3d − i
4p

3
|d12|2nc

h̄G12
, (4.1)

where 3d = Re 3h, d12 is a dipole matrix element of the gain transition in a
chromophore centre of the gain medium, G12 is a spectral width of this transition
and nc is the concentration of these centres.1

The condition for the full electric loss compensation in the metamaterial and
amplification (overcompensation) at the resonant frequency u = un is

Im 3̄(u) ≤ 0. (4.2)

Taking equation (3.14) into account, this reduces to

snIm 3m(u) − 4p

3
|d12|2nc(1 − sn)

h̄G12
≤ 0. (4.3)

Finally, taking into account equations (3.4) and (3.5) and that Im 3m(u) > 0, we
obtain from equation (4.3) the condition of the loss (over)compensation as

4p

3
|d12|2nc[1 − Re s(u)]
h̄G12Re s(u)Im 3m(u)

≥ 1, (4.4)

1If the inversion is not maximum, then this and subsequent equations are still applicable if one
sets as the chromophore concentration nc the inversion density: nc = n2 − n1, where n2 and n1 are
the concentrations of the chromophore centres of the gain medium in the upper and lower states
of the gain transition, respectively.
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where the strict inequality corresponds to the overcompensation and net
amplification. In equation (4.1), we have assumed non-polarized gain transitions.
If these transitions are all polarized along the excitation electric field, the
concentration nc should be multiplied by a factor of 3.

Equation (4.4) is a fundamental condition, which is precise (assuming that
the requirement (3.10) is satisfied, which is very realistic for metamaterials) and
general. Moreover, it is fully analytical and, actually, very simple. Remarkably, it
depends only on the material characteristics and does not contain any geometric
properties of the metamaterial system or the local fields. In particular, the hot
spots, which are prominent in the local fields of nanostructures [35,38], are
completely averaged out owing to the integrations in equations (2.5) and (3.12).
We note that this implies that taking into account the gain enhancement by a
factor (3h + 2)/3 owing to the local field effects in Wuestner et al. [31] is erroneous.

The condition (4.4) is completely non-relativistic (quasi-static)—it does not
contain the speed of light c, which is also characteristic of the spaser. It is useful
to express this condition also in terms of the stimulated emission cross section
se(u) (where u is the central resonance frequency) of a chromophore of the gain
medium as

cse(u)
√

3dnc[1 − Re s(u)]
uRe s(u)Im 3m(u)

≥ 1. (4.5)

It is of fundamental importance to compare this condition of the full loss
(over)compensation with the spasing condition [17]. This criterion of spasing,
which we will use in the form of eqn (14) of Stockman [20], is fully applicable
for the considered metamaterial. For the zero detuning between the gain medium
and the SP eigenmode, this criterion can be exactly expressed as [20]

4p

3
|d12|2Re s(u)

h̄gnG12Re s′(u)

∫
V

|En(r)|2r(r) dV ≥ 1, (4.6)

where gn = Im s(u)/Re s′(u) is the decay rate [17] of the SPs at a frequency u,
s′(u) ≡ vs(u)/vu, and r(r) is the density of the gain medium chromophores.

The field quantization in general and SP field quantization in particular can
only be carried out consistently when the energy loss is small enough [17]. In
our case, this implies that the quality factor is very large, Q � 1. Otherwise, the
field energy needed for the quantization is not conserved and, actually, cannot be
introduced [39]. For Q � 1, we have, with a good accuracy,

gn = Im 3m(u)
Re 3′

m(u)
and Re s′(u) = 1

3d
[Re s(u)]2Re 3′

m(u), (4.7)

where 3′
m(u) = v3m(u)/vu. Substituting this into equation (4.6), we obtain for the

spasing condition

4p

3
|d12|2

h̄G12Re s(u)Im 3m(u)

∫
V

|En(r)|2r(r) dV ≥ 1. (4.8)

Taking equations (3.2) and (3.3) into account and assuming that rn(r) =
[1 − q(r)]nc, i.e. the chromophores are distributed in the dielectric with a
constant density nc, we exactly reduce equation (4.8) to the form of equation
(4.4). This brings us to an important conclusion: the full compensation
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(overcompensation) of the optical losses in a metamaterial, which is resonant
and dense enough to satisfy condition (3.10), and the spasing occur under
precisely the same conditions. Inequality (4.4) is then a criterion for both the
loss (over)compensation and spasing.

5. Discussion of results and comparison with publications

The above description of a gain metameterial as a spaser is given for a macroscopic
system that is much smaller than the photon wavelength l. Nevertheless, it
is still applicable to any macroscopic metamaterial. The reason is that such a
metamaterial is a periodic system that supplies feedback just like the grating
is a distributed feedback (DFB) laser. Because it is a plasmonic system, there
is no requirement that the periodicity of the grating is a multiple of l/2. The
lattice constant a of such a DFB spaser can be much smaller than l/2. The
generating modes of any DFB laser or spaser are band-edge Bloch modes, which
are non-propagating and whose half-wavelength is equal to a. Because a 
 l,
these spasing modes are dark and cannot decay into photons, minimizing their
radiative loss. These non-propagating band-edge modes are also known to localize
and will spase inside the metamaterial, clamping the inversion and eliminating
the net gain. The fact of the equivalence of the full loss compensation and spasing
is intimately related to the general criteria of the thermodynamic stability with
respect to small fluctuations of electric and magnetic fields (see ch. IX of [39])

Im 3̄(u) > 0, Im m̄(u) > 0, (5.1)

which must be strict inequalities for all frequencies for electromagnetically
stable systems, i.e. systems stable with respect to small perturbations of
the electromagnetic fields. For systems in thermodynamic equilibrium, these
conditions are automatically satisfied.

However, for the systems with gain, the conditions (5.1) can be violated,
which means that such systems can be electromagnetically unstable. The first of
conditions (5.1) is opposite to equations (4.2) and (4.4). This has a transparent
meaning: the electrical instability of the system is resolved by its spasing.

The significance of these stability conditions for gain systems can be elucidated
by the following gedanken experiment. Take a small isolated piece of such a
metamaterial. Consider that it is excited at an optical frequency u either by
a weak external optical field E or acquires such a field owing to fluctuations
(thermal or quantum). The energy density2 E of such a system is given by the
Brillouin formula [39]

E = 1
16p

vuRe 3̄

vu
|E|2. (5.2)

The internal optical energy density loss Q per unit time (i.e. the rate of the heat
density production in the system) is [39]

Q = 1
8p

uIm 3̄|E|2. (5.3)

2For the energy of the system to be definite, it is necessary to assume that the loss is not too large,
|Re 3̄| � Im 3̄. This condition is well realistic for most metamaterials.
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Assume that the internal (ohmic) loss dominates over other loss mechanisms
such as the radiative loss or energy flux out of the selected subsystems owing to
propagating modes, which is also a realistic assumption since the ohmic loss is
very large for the experimentally studied systems.

In this case of dominating ohmic losses, we have dE/dt = Q. Then equations
(5.2) and (5.3) can be resolved together yielding the energy E and electric field
|E| of this system to evolve with time t exponentially with some decrement G as

|E| ∝ √
E ∝ e−Gt and G = uIm 3̄

v(uRe 3̄)/vu
. (5.4)

We are interested in a resonant case when the metamaterial possesses a
resonance at some eigenfrequency un ≈ u. This is true, in particular, for the
case of plasmonic behaviour when Re 3̄(u) < 0. Then the dominating contribution
to 3̄ comes from a resonant SP eigenmode n with a frequency un ≈ u. In
such a case, the dielectric function [35] 3̄(u) has a simple pole at u = un .
As a result, vuRe 3̄/vu ≈ uvRe 3̄/vu and, consequently, G = gn , where gn is
given by equation (4.7), where the metal dielectric function 3m is replaced by
the effective permittivity 3̄ of the metamaterial. Thus, equation (5.4) is fully
consistent with the spectral theory of SPs whose result is equation (4.7).

If the losses are not very large so that energy of the system is meaningful, the
Kramers–Kronig causality requires [39] that v(uRe 3̄)/vu > 0. Thus, Im 3̄ < 0 in
equation (5.4) would lead to a negative decrement, G < 0, implying that the initial
small fluctuation starts exponentially growing in time in its field and energy,
which is an instability. Such an instability is indeed not impossible: it will result
in spasing that will eventually stabilize |E| and E at finite stationary levels of the
spaser generation.

Note that the spasing limits (clamps) the gain and population inversion making
the net gain to be precisely zero [20] in the stationary (continuous wave or CW)
regime. This makes the complete loss compensation and its overcompensation
impossible in a dense resonant metamaterial where the feedback is created by the
internal inhomogeneities and the facets of the system.

To illustrate this point, we show in figure 1 the kinetics of the stationary (CW)
operation of a nanoshell spaser [20]. Figure 1a displays the SP population Nn
per spasing mode as a function of the pumping rate g that shows a pronounced
threshold and a linear increase with g typical for both lasers and spasers [20]. This
quasi-linearity is due to the fact that the stimulated emission dominates, and the
excitation generated in the gain medium with a high probability transfers the
energy to the coherent SP population.

The pronounced clamping of the population inversion after the onset of the
spasing is illustrated in figure 1b. This displays the population inversion n21 =
n2 − n1, where n2 is the population of the upper spasing level in the gain medium,
and n1 is that of the lower level. As one can see from comparison with figure 1a,
above the threshold of the spasing, the population inversion of the gain medium
is clamped at a rather low level n21 ∼ 1%. The corresponding net amplification in
the CW spasing regime is exactly zero, which is a condition for the CW regime.

Because the loss (over)compensation condition (4.4), which is also the spasing
condition, is geometry-independent, it is useful to illustrate it for commonly
used plasmonic metals, gold and silver whose permittivity we adopt from
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Figure 1. Illustration of the stationary (CW) mode of a nanoshell spaser (adapted from [20]). The
curves are colour-coded corresponding to the spasing frequency us determined by the aspect ratio
of the corresponding nanoshell. (a) Population of SPs per spasing mode as a function of excitation
rate g per one chromophore of the gain medium. (b) Population inversion n21 as a function of
excitation rate g.
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Figure 2. Spasing criterion as a function of optical frequency u. The straight line (red) represents
the threshold for the spasing and full loss compensation, which take place for the curve segments
above it. (a) Computations for silver. The chromophore concentration is nc = 6 × 1018 cm−3 for
the lower curve (black) and nc = 2.9 × 1019 cm−3 for the upper curve (blue). The black diamond
shows the value of the spasing criterion for the conditions of Noginov et al. [40]—see the text. (b)
Computations for gold. The chromophore concentration is nc = 3 × 1019 cm−3 for the lower curve
(black) and nc = 2 × 1020 cm−3 for the upper curve (blue).

Johnson & Christy [41]. For the gain-medium chromophores, we will use a
reasonable set of parameters, which we will, for the sake of comparison, adapt
from Wuestner et al. [31]: G12 = 5 × 1013 s−1 and d12 = 4.3 × 10−18 esu. The
results of computations are shown in figure 2. For silver as a metal and nc =
6 × 1018 cm−3, the corresponding lower (black) curve in figure 2a does not reach
the value of 1, implying that no full loss compensation is achieved. In contrast,
for a higher but still very realistic concentration of nc = 2.9 × 1019 cm−3, the
upper curve in figure 2a does cross the threshold line in the near-infrared region.
Above the threshold area, there will be instability and the onset of spasing. As
figure 2b demonstrates, for gold the spasing occurs at higher, but still realistic,
chromophore concentrations.
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Now let us discuss the implications of our results for the research published
recently on gain metamaterials. To carry out a quantitative comparison with
Wuestner et al. [31], we turn to figure 2a where the lower (black) curve
corresponds to the nominal value of nc = 6 × 1018 cm−3 used in Wuestner
et al. [31]. There is no full loss compensation and spasing. This is explained
by the fact that Wuestner et al. [31] uses, as a close inspection shows, the gain
dipoles parallel to the field (this is equivalent to increasing nc by a factor of 3)
and the local field enhancement (this is equivalent to increasing nc by a factor
of (3h + 2)/3, which, in actuality, is eliminated owing the space integration—
see our discussion in the paragraph after equation (4.4)). This is equivalent
to increasing in our formulas the concentration nc of the chromophores by a
factor of 3h + 2 to nc = 2.9 × 1019 cm−3, which corresponds to the upper curve in
figure 2a. This curve rises above the threshold line exactly in the same (infra)red
region as in Wuestner et al. [31]. Note that this article of Wuestner et al.
replaces the actual nanolocalized plasmonic field with the spatially uniform
Lorentz field Eloc = (1/3)(3h + 2)E, where E is the macroscopic (external) field
that is constant in space. This leads to the loss of any spasing whose feedback
is supplied by the spatial variation and nanolocalization of the plasmonic
modes.

This agreement of the threshold frequencies between our analytical theory
and numerical theory [31] is not accidental: inside the region of stability (i.e.
in the absence of spasing) both theories should and do give identical results,
provided that the gain-medium transition alignment is taken into account, and
the local field-enhancement-effect elimination by the averaging is taken into
account. However, above the threshold (in the region of the overcompensation),
there should be spasing causing the population inversion clamping and zero net
gain, and not a loss compensation. To describe this effect, one has to invoke the
equation for coherent SP amplitude (eqn (6) of [20]), which is absent in Wuestner
et al. [31].

The complete loss compensation is stated in a recent experimental paper
[30] where the system was actually a nanofilm rather than a three-dimensional
metamaterial. For the rhodamine 800 dye used with extinction cross section [42]
s = 2 × 10−16 cm2 at 690 nm in concentration nc = 1.2 × 1019 cm−3, realistically
assuming 3d = 2.3, for frequency h̄u = 1.7 eV, we calculate from equation (4.5) a
point shown by the magenta solid circle in figure 2a, which is significantly above
the threshold. Because in such a nanostructure the local fields are very non-
uniform and confined near the metal similar to the spaser, they likewise cause
a feedback. The condition of equation (3.10) is likely to be well satisfied for
Xiao et al. [30]. Thus, the system should spase, which will cause the clamping of
inversion and loss of gain.

In contrast to these theoretical arguments, there is no evidence of spasing
indicated in the experiment [30], which can be explained by various factors.
Among them, the system of Xiao et al. [30] is a gain-plasmonic nanofilm and
not a true three-dimensional material. This system is not isotropic. Also, the
size of the unit cell of approximately 250 nm is significantly greater than the
reduced wavelength 7, which violates the quasi-static conditions and makes
the possibility of homogenization and considering this system as an optical
metamaterial problematic. This circumstance may also lead to an appreciable
spatial dispersion.
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In an experimental study of the lasing spaser [26], a nanofilm of PbS QDs
was positioned over a two-dimensional metamaterial consisting of an array of
negative split-ring resonators. When the QDs were optically pumped, the system
exhibited an increase of the transmitted light intensity on the background of a
strong luminescence of the QDs but apparently did not reach the lasing threshold.
The polarization-dependent loss compensation was only approximately 1 per
cent. Similarly, for an array of split-ring resonators over a resonant quantum
well, where the inverted electron–hole population was excited optically [29], the
loss compensation did not exceed approximately 8 per cent. The relatively low
loss compensation in these papers may be due either to random spasing and/or
spontaneous or amplified spontaneous emission enhanced by this plasmonic array,
which reduces the population inversion.

A dramatic example of possible random spasing is presented in Noginov
et al. [40]. The system studied was a Kretschmann-geometry SPP set-up [43]
with an added approximately 1 mm polymer film containing rhodamine 6G dye
in nc = 1.2 × 1019 cm−3 concentration. When the dye was pumped, there was
outcoupling of radiation in a range of angles. This was a threshold phenomenon
with the threshold increasing with the Kretschmann angle. At the maximum of
the pumping intensity, the widest range of the outcoupling angles was observed,
and the frequency spectrum at every angle narrowed to a peak near a single
frequency h̄u ≈ 2.1 eV.

These observations of Noginov et al. [40] can be explained by the spasing where
the feedback is provided by roughness of the metal. At high pumping, the localized
SPs (hot spots), which possess the highest threshold, start to spase in a narrow
frequency range around the maximum of the spasing criterion (4.4). Because
of the sub-wavelength size of these hot spots, the Kretschmann phase-matching
condition is relaxed, and the radiation is outcoupled into a wide range of angles.

The SPPs of Noginov et al. [40] excited by the Kretschmann coupling are
short-range SPPs, very close to the antisymmetric SPPs. They are localized at
sub-wavelength distances from the surface, and their wavelength in the plane
is much shorter than u/c. Thus, they can be well described by the quasi-
static approximation and the present theory is applicable to them. Substituting
the above-given parameters of the dye and the extinction cross section se =
4 × 10−16 cm2 into equation (4.5), we obtain a point shown by the black diamond
in figure 2a, which is clearly above the threshold, supporting our assertion of
the spasing. Likewise, the amplified spontaneous emission and, possibly, spasing
appear to have prevented the full loss compensation in a SPP system of Bolger
et al. [28].

Note that the long-range SPPs of Leon & Berini [27] are localized significantly
weaker (at distances approx. l) than those excited in Kretschmann geometry.
Thus, the long-range SPPs experience a much weaker feedback, and the
amplification instead of the spasing can be achieved. Generally, the long-range
SPPs are fully electromagnetic (non-quasi-static) and are not describable in the
present theory.

Concluding, we have fundamentally established that the conditions of the
full loss compensation (overcompensation) and spasing in dense resonant
plasmonic metamaterials (satisfying the realistic condition of equation (3.10))
are identical. These conditions are analytical and universal, i.e. independent
from the metamaterial geometry. Owing to the feedback inherent in the dense
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resonant metamaterials, this implies that an attempt at the full loss compensation
(over-compensation) in such metamaterials in actuality causes spasing that
clamps the gain-medium population inversion and eliminates the net gain,
precluding the full loss compensation.

I am grateful to M. Noginov and N. Noginova for valuable discussions. This work was supported
by grants from the Office of Basic Energy Sciences, Office of Science, US Department of Energy
and a grant from the US-Israel Binational Science Foundation.
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