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We demonstrate that the conditions of spaser generation and the full loss compensation in a dense

resonant plasmonic-gain medium (metamaterial) are identical. Consequently, attempting the full com-

pensation or overcompensation of losses by gain will lead to instability and a transition to a spaser state.

This will limit (clamp) the inversion and lead to the limitation on the maximum loss compensation

achievable. The criterion of the loss overcompensation, leading to the instability and spasing, is given in

an analytical and universal (independent from system’s geometry) form.
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There is a tremendous interest in nanoplasmonic sys-
tems with gain initiated by the introduction of the spaser
[1]. Such systems consist of a metal nanoplasmonic com-
ponent and a nanoscale gain medium (dye molecules,
semiconductor nanostructures such as quantum dots, etc.)
where the population inversion is created optically or
electrically [1,2]. If the surface plasmon (SP) amplification
by stimulated emission overcomes the loss, the initial state
of the system loses its stability, and a new, spasing state
appears with a coherent SP population whose phase is due
to spontaneous symmetry breaking [3]. The spaser is a
nanoscopic generator of coherent local optical fields and
their ultrafast nanoamplifier.

There has been an active development of the idea of a
spaser. A nanoscopic spaser consisting of a gold nano-
sphere surrounded by a dielectric gain shell containing a
laser dye has been demonstrated [4]. Surface plasmon
polariton (SPP) spasers have been demonstrated with
one-, two-, and three-dimensional confinement [5–7].
The pregeneration narrowing of the resonant line in the
lasing spaser has been observed [8].

One of the most active research directions related to the
spaser has been compensation of losses by gain in plas-
monic waveguides and metamaterials, which is of principal
importance due to high losses in the optical range of
frequencies. Amplification of long-range SPPs in a gold
strip waveguide in the proximity of a pumped dye solution
has been demonstrated [9]. In gold nanofilms over an
amplifying medium containing PbS quantum dots, the
reduction of the SPP propagation loss by up to 30% has
been found [10]. In a metamaterial consisting of split-ring
resonators coupled to an optically pumped InGaAs quan-
tum well, a reduction of the transmission loss by � 8
percent has been observed [11]. The full compensation
and overcompensation of the optical transmission loss for
a fishnet metamaterial containing a pumped dye dispersed
in a polymer matrix has been observed [12]. Furthermore,
it has been claimed that this experiment is in agreement
with a theory based on a Maxwell-Bloch equations [13].

In this Letter we show that the full compensation or
overcompensation of the optical loss in an active metama-
terial (i.e., an optical system of macroscopic dimensions
containing a dense metal nanostructure and a gain me-
dium) leads to an instability that is resolved by its spasing
(i.e., becoming a spaser). This theory is based on the
density matrix equations, which are equivalent to the
Maxwell-Bloch equations of Ref. [13], supplemented by
an equation for a coherent SP field [3] and Green’s function
approach [14,15]. We further show that the conditions of
the complete resonant gain compensation in the dense
nanoplasmonic systems (which is the only type explored
either experimentally or theoretically so far) and the
threshold condition of spasing are identical. This spasing
limits (clamps) the gain and, consequently, does not allow
for the complete loss compensation (overcompensation) at
any frequency. Additionally, this spasing in the gain meta-
material will show itself as coherent emission similar to the
lasing spaser [8,16].
We will consider, for certainty, an isotropic and uniform

metamaterial whose unit cell is much smaller than the
reduced wavelength �. Then in a range of frequencies !,
it can be described by the effective permittivity �"ð!Þ and
permeability ��ð!Þ. We will concentrate below on the loss
compensation for the optical electric responses; similar
consideration with identical conclusions for the optical
magnetic responses is straightforward. Consider a small
piece of this metamaterial with sizes much greater that the
unit cell but much smaller than �, which is a metamaterial
itself. Let us subject this metamaterial to a uniform electric
field Eð!Þ oscillating with frequency !. We will denote
the local field at a point r inside this metamaterial as
eðr; !Þ. For such a small piece of the metamaterial, a
homogenization procedure gives an exact expression (see
Ref. [17] and references cited therein)

�"ð!Þ ¼ 1

VjEð!Þj2
Z
V
"ðr; !Þjeðr; !Þj2d3r; (1)

where V is the volume of this metamaterial piece.

PRL 106, 156802 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

15 APRIL 2011

0031-9007=11=106(15)=156802(4) 156802-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.156802


Consider frequency ! close to the resonance frequency
!n of an nth plasmonic eigenmode. To be bright, this
eigenmode must be dipolar. Then the Green’s function
expansion [14,15] shows that the eigenmode’s field can
be estimated as �EQf, where f is the fill factor of the
metal component, Q ¼ �Re"mð!Þ=Im"mð!Þ is the met-
al’s quality factor, and "mð!Þ is the metal’s permittivity.
Realistically assuming that fQ � 1, we conclude that the
resonant eigenmode’s field EnðrÞ ¼ �r’nðrÞ dominates
the local field, eðr; !Þ � anEnðrÞ, where an is a constant
whose exact value we will not need. In this case, the
effective permittivity (1) becomes

�"ð!Þ ¼ janj2
Z
V
"ðr; !ÞjEnðrÞj2d3r: (2)

Note that we conventionally assume the eigenmode nor-
malization as

R
V jEnðrÞj2d3r ¼ 1.

The quasistatic eigenmode equation is [18]

r�ðrÞr’nðrÞ ¼ snr2’nðrÞ; (3)

where sn is the corresponding eigenvalue, and �ðrÞ is the
characteristic function that is equal to 1 inside the metal
and 0 otherwise. The homogeneous Dirichlet-Neumann
boundary conditions are implied.

From Eq. (3) one can easily find that

sn ¼
Z
V
�ðrÞjEnðrÞj2d3r; 1 � sn � 0: (4)

The resonant frequency, ! ¼ !n, is defined by

sn ¼ Resð!Þ; sð!Þ � "hð!Þ
"hð!Þ � "mð!Þ ; (5)

where sð!Þ is Bergman’s spectral parameter, and "hð!Þ is
the permittivity of the surrounding host containing the gain
chromophore centers.

In the case of the full inversion (maximum gain) and in
the exact resonance, the host medium permittivity acquires
the imaginary part due to the stimulated emission as given
by the standard expression

"hð!Þ ¼ "d � i
4�

3

jd12j2nc
@�12

; (6)

where "d ¼ Re"h, d12 is the dipole matrix element of the
gain transition in a chromophore center of the gain me-
dium, �12 is a spectral width of this transition, and nc is the
concentration of these centers.

Using Eqs. (2) and (4), it is straightforward to show that
the effective permittivity (2) simplifies exactly to

�"ð!Þ ¼ janj2½sn"mð!Þ þ ð1� snÞ"hð!Þ�: (7)

The condition for the full electric loss (over)compensation
at the resonant frequency ! ¼ !n is Im �"ð!Þ � 0, which
reduces to

snIm"mð!Þ � 4�

3

jd12j2ncð1� snÞ
@�12

� 0: (8)

Finally, taking into account Eqs. (4) and (5) and that
Im"mð!Þ> 0, we obtain from Eq. (8) the condition of
the loss (over)compensation as

4�

3

jd12j2nc½1� Resð!Þ�
@�12Resð!ÞIm"mð!Þ � 1; (9)

where the strict inequality corresponds to the overcompen-
sation and net amplification. In Eq. (6) we have assumed
nonpolarized gain transitions. If these transitions are all
polarized along the excitation electric field, the concentra-
tion nc should be multiplied by a factor of 3.
This is a fundamental condition, which is precise (for

Qf � 1) and general. It is fully analytical and, actually,
very simple. Remarkably, it depends only on the material
characteristics and does not contain any geometric proper-
ties of the metamaterial system or the local fields. In
particular, the hot spots, which are prominent in the local
fields of nanostructures [18,19], are completely averaged
out due to the integrations in Eqs. (1) and (2). This implies
that taking into account the gain enhancement due to the
local field effects in Ref. [13] is erroneous.
The condition (9) is completely nonrelativistic (quasi-

static)—it does not contain speed of light c, which is
characteristic of the spaser. It is useful to express this
condition also in terms of the total extinction cross section
�eð!Þ (where ! is the central resonance frequency) of a
chromophore of the gain medium as

c�ð!Þ ffiffiffiffiffi
"d

p
nc½1� Resð!Þ�

!Resð!ÞIm"mð!Þ � 1: (10)

It is of fundamental importance to compare this condi-
tion of the full loss (over)compensation with the spasing
condition [1]. This criterion of spasing, which we will use
in the form of Eq. (14) of Ref. [3], is fully applicable for the
considered metamaterial. For the zero detuning between
the gain medium and the SP eigenmode, this criterion can
be exactly expressed as [3]

4�

3

jd12j2Resð!Þ
@�n�12Res

0ð!Þ
Z
V
jEnðrÞj2�ðrÞd3r � 1 (11)

where �n ¼ Imsð!Þ=Res0ð!Þ is the decay rate [1] of the
SPs at a frequency !, s0ð!Þ � @sð!Þ=@!, and �ðrÞ is the
density of the gain-medium chromophores.
The SP field quantization can only be carried out con-

sistently when the energy loss is small enough [1]. This
implies that the quality factor Q � 1. Otherwise the field
energy needed for the quantization is not conserved and,
actually, cannot be introduced [20]. For Q � 1, we have,
with a good accuracy,

�n ¼ Im"mð!Þ
Re"0mð!Þ ; Res0ð!Þ ¼ 1

"d
½Resð!Þ�2Re"0mð!Þ;

(12)

where "0mð!Þ ¼ @"mð!Þ=@!. Substituting this into
Eq. (11), we obtain for the spasing condition
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4�

3

jd12j2
@�12Resð!ÞIm"mð!Þ

Z
V
jEnðrÞj2�ðrÞd3r � 1: (13)

Taking Eq. (4) into account and assuming that �nðrÞ ¼
½1� �ðrÞ�nc, i.e., the chromophores are distributed in the
dielectric with a constant density nc, we exactly reduce
Eq. (13) to the form of Eq. (9). This brings us to an
important conclusion: the full compensation (overcompen-
sation) of the optical losses in a resonant dense metamate-
rial with fQ � 1 and the spasing occur under precisely the
same conditions. Inequality (9) is the criterion for both the
loss (over)compensation and spasing.

This fact of the equivalence of the full loss compensa-
tion and spasing is intimately related to the general criteria
of the thermodynamic stability with respect to small fluc-
tuations of electric and magnetic fields (see Chap. IX of
Ref. [20])

Im �"ð!Þ> 0; Im ��ð!Þ> 0; (14)

which must be strict inequalities for all frequencies in
thermodynamic equilibrium.

For gain systems, these conditions may be violated. The
first of conditions (14) is opposite to Eq. (9). This has a
transparent meaning: when the spasing condition is satis-
fied, the system possesses the electrical instability, which is
resolved by its spasing that limits (clamps) the gain and
population inversion turning the net gain to be precisely
zero [3]. This makes the complete loss compensation and
its overcompensation impossible in a dense resonant meta-
material with a feedback, which is created by the internal
inhomogeneities of the system (and its facets too).
Precisely the same situation is true for the conventional
lasers whose net gain is exactly zero for the stationary
generation due to the lasing transition saturation.

Because the loss (over)compensation condition (9),
which is also the spasing condition, is geometry indepen-
dent, it is useful to illustrate it for gold and silver, commonly
used plasmonic metals, whose permittivities are adapted
from Ref. [21]. For the gain-medium chromophores, we
will use a reasonable set of parameters, which we will,
for the sake of comparison, adapt from Ref. [13]: �12 ¼
5	 1013 s�1 andd12 ¼ 4	 10�18 esu. The results of com-
putations are shown in Fig. 1. For silver as a metal and nc ¼
6	 1018 cm�3, the corresponding lower (black) curve in
panel (a) does not reach the value of 1, implying that no full
loss compensation is achieved. In contrast, for a higher but
still very realistic concentration of nc ¼ 2:9	 1019 cm�3,
the upper curve in Fig. 1(a) does cross the threshold line in
the near-infrared region. Above the threshold, there will be
the instability and the spasing. As Fig. 1(b) demonstrates,
for gold the overcompensation and spasing take place at
higher, but still realistic, chromophore concentrations.

Now let us discuss the implications of our results for the
research published recently on the gain metamaterials. To
carry out a quantitative comparison with Ref. [13], we turn
to Fig. 1(a) where the lower (black) curve corresponds to

the nominal value of nc ¼ 6	 1018 cm�3 used in
Ref. [13]. There is no full loss compensation and spasing,
which is explained by the fact that Ref. [13] uses, as a close
inspection shows, the gain dipoles parallel to the field and
the local field enhancement [the latter, actually, is elimi-
nated by the space integration—see our discussion after
Eq. (9)]. This is equivalent to increasing in our formulas
the concentration of the chromophores by a factor of
"h þ 2 to nc ¼ 2:9	 1019 cm�3, which corresponds to
the upper curve in Fig. 1(a). This curve rises above the
threshold line exactly in the same (infra)red region as in
Ref. [13]. The agreement of the threshold frequencies
between our analytical theory and numerical theory [13]
is not accidental: inside the region of stability (i.e., in the
absence of spasing) both theories should and do give
identical results, provided that the gain-medium transition
alignment is taken into account, and the local field
enhancement-effect elimination by the averaging is taken
into account. However, above the threshold (in the region
of the overcompensation), there should be spasing causing
the population inversion clamping and zero net gain, and
not a loss compensation. This effect is described by the
equation for coherent SP amplitude [Eq. (6) of Ref. [3]],
which is absent in Ref. [13].
The complete loss compensation is stated in the recent

experimental paper [12] where the system was actually a

FIG. 1 (color online). Spasing criterion of Eq. (9) as a function
of optical frequency !. The straight red line represents the
threshold for the spasing and full loss compensation, which
take place for the curve segments above it. (a) Computations
for silver. The chromophore concentration is nc¼6	1018 cm�3

for the lower curve (black) and nc ¼ 2:9	 1019cm�3 for the
upper curve (blue). The magenta solid circle and black diamond
show the values of the spasing criterion for the conditions of
Refs. [12,23], respectively—see the text. (b) Computations for
gold. The chromophore concentration is nc ¼ 3	 1019 cm�3

for the lower curve (black) and nc ¼ 2	 1020 cm�3 for the
upper curve (blue).
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nanofilm rather than a 3dmetamaterial. For the Rhodamine
800 dye used with extinction cross section � ¼
2	 10�16 cm2 at 690 nm [22] in concentration nc ¼
1:2	 1019 cm�3, realistically assuming "d ¼ 2:3, for fre-
quency @! ¼ 1:7 eV, we calculate from Eq. (10) a point
shown by the magenta solid circle in Fig. 1(a), which is
significantly above the threshold. Because in such a nano-
structure the local fields are very nonuniform and confined
near the metal like in the spaser, they likewise cause a feed-
back. Thus, the system should spase, which will cause the
clamping of inversion and loss of gain. There is no evidence
of spasing indicated in the paper, which can be explained by
various factors. Among them, the system of Ref. [12] is a
gain-plasmonic nanolayer and not a true 3d material. This
system is not isotropic. Also, the size of the unit cell
�250 nm is greater than �, which violates the quasistatic
conditions andmakes the possibility of homogenization and
considering it as an optical metamaterial problematic. This
can also lead to an appreciable spatial dispersion.

A dramatic example of possible random spasing is pre-
sented in Ref. [23]. The system studied was a
Kretschmann-geometry setup [24] with an added �1 �m
polymer film containing Rhodamine 6 G dye in the nc ¼
1:2	 1019 cm�3 concentration. When the dye was
pumped, there was outcoupling of radiation in a range of
angles. This was a threshold phenomenon with the thresh-
old increasing with the Kretschmann angle. At the maxi-
mum of the pumping intensity, the widest range of the
outcoupling angles was observed, and the frequency spec-
trum at every angle narrowed to a peak near a single
frequency @! � 2:1 eV. This can be explained by the
spasing where the feedback is provided by roughness of
the metal. (The short-range SPPs excited in the
Kretschmann geometry are almost quasistatic and can be
described by the present theory.) At the high pumping, the
localized SPs with the highest threshold start to spase near
a single frequency. Because of their subwavelength size,
the Kretschmann phase-matching condition is relaxed, and
the radiation is outcoupled into a wide range of angles.
Substituting the above-given parameters of the dye and
� ¼ 4	 10�16 cm2 into Eq. (10), we obtain a point shown
by the black diamond in Fig. 1, which is clearly above the
threshold, supporting a possibility of the spasing. It is also
possible that spasing prevented the full loss compensation
in a SPP system [10].

Concluding, we have fundamentally established that the
conditions of the full loss compensation (overcompensa-
tion) and spasing in dense, resonant plasmonic metamate-
rials are identical. This condition is analytical and
universal, i.e., independent from the metamaterial geome-
try. Because of the feedback inherent in the dense resonant
metamaterials due to their inhomogeneity on the nano-
scale, this implies that an attempt of the full loss compen-
sation (overcompensation) will in actuality bring about
spasing thus eliminating the net gain and precluding the
full loss compensation.
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