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Abstract: A review of nanoplasmonics is given. This includes fun-
damentals, nanolocalization of optical energy and hot spots, ultrafast
nanoplasmonics and control of the spatiotemporal nanolocalization of
optical fields, and quantum nanoplasmonics (spaser and gain-assisted
plasmonics). This article reviews both fundamental theoretical ideas in
nanoplasmonics and selected experimental developments. It is designed
both for specialists in the field and general physics readership.
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1. Introduction

1.1. Preamble

This is a review article on fundamentals of nanoplasmonics. Admittedly, the selection of the
included subjects reflects the interests and expertise of the author.

We have made a conscious decision not to include such important and highly developed
subject as SERS (Surface Enhanced Raman Scattering). The reason is that this subject is too
large and too specialized for this article. There is an extensive literature devoted to SERS. This
includes both reviews and original publications – see, e.g., Refs. [1–5] and a representative
collective monograph [6]. Another important subject that we do not include in this review
is the extraordinary transmission of light through subwavelength holes – there are extensive
literature and excellent reviews on this subject – see, e.g., [7–11]. Also, due to limitations
of time and space we do not cover systematically a subject of particular interest to us: the
adiabatic nanoconcentration of optical energy [12]. There are many important experimental
developments and promising applications of this phenomenon [12–22]. This field by itself is
large enough to warrant a dedicated review. We only briefly touch this subject in Sec. 4.5.

Another important class of questions that we leave mostly outside of this review article are
concerned with applications of nanoplasmonics. Among this applications are sensing, biomed-
ical diagnostics, labels for biomedical research, nanoantennas for light-emitting diodes, etc.
There exist a significant number of reviews on the applications of nanopalsmonics, of which
we mention just a few below, see also a short feature article [23]. Especially promising and
important are applications to cancer treatment [24, 25], sensing and to solar energy conver-
sion [26].

Presently, nanoplasmonics became a highly developed and advanced science. It would have
been an impossible task to review even a significant part of it. We select some fundamental
subjects in plasmonics of high and general interest. We hope that our selection reflects the past,
shows the modern state, and provides an attempt a glimpse into the future. Specifically, our
anticipation is that the ultrafast nanoplasmonics, nanoplasmonics in strong field, and the spaser
as a necessary active element will be prominently presented in this future. On the other hand, it
is still just a glimpse into it.

1.2. Composition of the article

In Sec. 2, we present an extended introduction to nanoplasmonics. Then we consider selected
subfields of nanoplasmonics in more detail. Nanoplasmonics is presently a rather developed
science with a number of effects and rich applications [23]. In the center of our interest and, in
our opinion, the central problem of nanoplasmonics is control and monitoring of the localization
of optical energy in space on the nanometer scale and in time on the femtosecond or even
attosecond scale.

In Sec. 3, we consider ultimately small nanoplasmonic systems with size less or on the or-
der of skin depth ls where we employ the so-called quasistatic approximation to describe in
an analytical form the nanolocalized optical fields, their eigenmodes and hot spots, and intro-
duce the corresponding Green’s functions and solutions. This Section is focused on the spatial
nanoconcentration of the local optical fields.

In Sec. 4 we present ideas and results of ultrafast nanoplasmonics and coherent control of
nanoscale localization of the optical fields, including control in time with femtosecond resolu-
tion. We will describe both theoretical ideas and some experimental results.

One of the most important problems of the nanoplasmonics, where only recently solutions
and first experimental results have been obtained, is the active and gain nanoplasmonics. Its
major goal is to create nanoscale quantum generators and amplifiers of optical energy. In Sec.

#151468 - $15.00 USD Received 20 Jul 2011; revised 5 Oct 2011; accepted 10 Oct 2011; published 24 Oct 2011
(C) 2011 OSA 24 October 2011 / Vol. 19,  No. 22 / OPTICS EXPRESS  22039



5, we present theory and a significant number of experimental results available to date regarding
the spaser and related polaritonic spasers (nanolasers or plasmonic lasers). We also consider a
related problem of loss compensation in metamaterials.

2. Basics of nanoplasmonics

2.1. Fundamentals

Nanoplasmonics is a branch of optical condensed matter science devoted to optical phenom-
ena on the nanoscale in nanostructured metal systems. A remarkable property of such systems
is their ability to keep the optical energy concentrated on the nanoscale due to modes called
surface plasmons (SPs). It is well known [27] and reviewed below in this article that the ex-
istence of SPs depends entirely on the fact that dielectric function εm has a negative real part,
Reεm < 0. The SPs are well pronounced as resonances when the losses are small enough, i.e.,
Imεm �−Reεm. This is a known property of a good plasmonic metal, valid, e.g., for silver in
the most of the visible region. We will call a substance a good plasmonic metal if these two
properties

Reεm < 0 , Imεm �−Reεm (1)

are satisfied simultaneously.
There is a limit to which an electromagnetic wave can be concentrated. We immediately note

that, as we explain below, nanoplasmonics is about concentration of electromechanical energy
at optical frequencies (in contrast to electromagnetic energy) on the nanoscale.

The scale of the concentration of electromagnetic energy is determined by the wavelength
and can be understood from Fig. 1 (a). Naively, let us try to achieve the strongest light localiza-
tion using two parallel perfect mirrors forming an ideal Fabry-Perot resonator. A confined wave
(resonator mode) should propagate normally to the surface of the mirrors. In this case, its elec-
tric field E is parallel to the surface of the mirror. The ideal mirror can be thought of as a metal
with a zero skin depth that does not allow the electric field of the wave E to penetrate inside.
Therefore the field is zero inside the mirror and, due to the Maxwell boundary conditions, must
be zero on the surface of the mirror. The same condition should be satisfied at the surface of the
second mirror. Thus, the length L of this Fabry-Perot cavity should be equal an integer number
n of the half-wavelengths of light in the inner dielectric, L = nλ/2. The minimum length of this
resonator is, obviously λ/2. This implies that light cannot be confined tighter than to a length
of λ/2 in each direction, with the minimum modal volume of λ 3/8.

One may think that it is impossible to achieve a localization of the optical energy to smaller
volume than λ 3/8 by any means, because the ideal mirrors provide the best confinement of
electromagnetic waves. There are two implied assumptions: (i) The optical energy is electro-
magnetic energy, and (ii) The best confinement is provided by ideal mirrors. Both these as-
sumptions must be abandoned to achieve nanolocalization of optical energy.

Consider a nanoplasmonic system whose size is less than or comparable to the skin depth

ls = λ

[
Re

( −ε2
m

εm + εd

)1/2
]−1

, (2)

where λ = λ/(2π) = ω/c is the reduced vacuum wavelength. For for single-valence plasmonic
metals (silver, gold, copper, alkaline metals) ls ≈ 25 nm in the entire optical region.

For such a plasmonic nanosystem with R � ls, the optical electric field penetrates the entire
system and drives oscillations of the metal electrons. The total energy of the system in this
case is a sum of the potential energy of the electrons in the electric field and their mechanical
kinetic energy. While the magnetic field is present, non-relativistic electrons’ interaction with it
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Fig. 1. (a) Localization of optical fields by ideal mirrors and (b) by a gold nanoparticle. (c)
Schematic of charge separation is shown in panel.

is weak proportional to a small parameter vF/c ∼ α ∼ 10−2, where vF is the electron speed at
the Fermi surface, c is speed of light, and α = e2/h̄c is the fine structure constant. Thus in this
limit, which is conventionally called quasistatic, the effects of the magnetic component of the
total energy is relatively small. Hence, this total energy is mostly electromechanical (and not
electromagnetic) energy. [At this point, it may be useful to refer to Eq. (104), which expresses
the Brillouin formula for the total energy E of a system in such a quasistatic case.] This is why
the wavelength, which determines the length scale of the energy exchange between the electric
and magnetic components of an electromagnetic wave does not define the limit of the spatial
localization of energy. Because the size of the system R is smaller than any electromagnetic
length scale, of which smallest is ls, it is R that defines the spatial scale of the optical energy
localization. Thus the optical fields are confined on the nanoscale, and their spatial distribution
scales with the system’s size. This physical picture is at the heart of the nanoplasmonics.

Consider as an example a gold nanosphere of radius R < ls, e.g., R ∼ 10 nm, subjected to a
plane electromagnetic wave, as shown in Fig. 1 (b). The field penetrates the metal and causes
displacement of electrons with respect to the lattice resulting in the opposite charges appearing
at the opposing surfaces, as illustrated in in Fig. 1 (c). The attraction of these charges causes a
restoring force that along with the (effective) mass of the electrons defines an electromechanical
oscillator called a SP. When the frequency ωsp of this SP is close to the frequency of the
excitation light wave, a resonance occurs leading to the enhanced local field at the surface,
as illustrated in Fig. 1 (b).

This resonant enhancement has also an adverse side: loss of energy always associated with
a resonance. The rate of this loss is proportional to Imεm [28]. This leads to a finite lifetime of
SPs. The decay rate of the plasmonic field γ is ∝ (Imεm)

−1. In fact, it is given below in this
article as Eq. (49) in Sec. 3.4. This expression has originally been obtained in Ref. [29] and is
also reproduced below for convenience,

γ =
Ims(ω)
∂Res(ω)

∂ω

≈ Imεm(ω)
∂Reεm(ω)

∂ω

, (3)

where
s(ω) =

εd

εd − εm(ω)
(4)

is Bergman’s spectral parameter [27]. Note that γ does not explicitly depend on the system
geometry but only on the optical frequency ω and the permittivities. However, the system’s
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Fig. 2. (a) Quality factor Q for silver and (b) for gold calculated according to Eq. (5) (red)
and Eq. (6) (blue) as a function of frequency ω .

geometry determines the SP frequency ω and, thus, implicitly enters these equations. The ap-
proximate equality in Eq. (3) is valid for relatively small relaxation rates, γ � ω . Apart from γ ,
an important parameter is the so-called quality factor

Q =
ω
2γ

≈ ω ∂Reεm(ω)
∂ω

2Imεm(ω)
(5)

The quality factor determines how many optical periods free SP oscillations occur before field
decays. It also shows how many times the local optical field at the surface of a plasmonic
nanoparticle exceeds the external field.

Note that another definition of the quality factor, which is often used, is

Q =
−Reεm(ω)

Imεm(ω)
. (6)

The SP quality factors Q calculated according to Eqs. (5) and (6) for gold and silver using
the permittivity data of Ref. [30] are shown in Fig. 2. The Q-factors found from these two defi-
nitions agree reasonably well in the red to near-infrared (near-ir) region but not in the yellow to
blue region of the visible spectrum. The reason is that these two definitions would be equivalent
if metals’ permittivity were precisely described by a Drude-type formula Reεm(ω) =−ω2

p/ω2,
where ωp is the bulk plasma frequency; h̄ωp ≈ 9 eV for one-electron metals such as silver, cop-
per, gold, and alkaline metals. This formula is reasonably well applicable in the the red and
longer wavelength part of the spectrum, but not in the yellow to blue part where the D-band
transitions are important. Note that silver is a much better plasmonic metal than gold: its Q-
factor is several-fold of that of gold.

The finite skin depth of real metals leads to an effect related to nanoplasmonic confinement:
a phase shift Δϕ for light reflected from a metal mirror deviates from a value of Δϕ = π char-
acteristic of an ideal metal. As suggested in Ref. [31], this allows for ultrasmall cavities whose
length L � λ . While generally this is a valid idea, there two problems with Ref. [31] that affect
the validity of its specific results. First, the Fresnel reflection formulas used in this article to
calculate Δϕ are only valid for infinite surfaces but not for the “nanomirrors” in a nanocavity.
Second, Eq. (1) of this article expressing Q is incorrect: it contains in the denominator a quantity
∂ [ωImεm(ω)]/∂ω instead of 2Imεm(ω) as in Eq. (5). The correct expression [28] for Ohmic
losses defining the Q-factor, which we reproduce as Eq. (105), is proportional to Imεm(ω) as
in Eq. (5) and not to ∂ [ωImεm(ω)]/∂ω , which constitutes a significant difference.

The lifetime τ of the SPs is related to the spectral width as

τ =
1
2γ

. (7)
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Fig. 3. (a) Lifetime τ of SPs for silver and (b) for gold calculated according to Eq. (7) as a
function of frequency ω .

Note that the SP spectral width γ , quality factor Q, and lifetime τ depend explicitly only on
frequency ω and the type of the metal (permittivity εm) but not on the nanosystem’s geometry
or surrounding dielectric. However, this geometry and the ambient-dielectric permittivity εd do
affect the modal frequency and enter the corresponding Eqs. (3), (5), and (7) implicitly via ω .

The dependence of the SP lifetime τ on frequency ω calculated for gold and silver using
permittivity [30] is illustrated in Fig. 3. This lifetime is in the range 10− 60 fs for silver and
1−10 fs for gold in the plasmonic region. These data show that nanoplasmonic phenomena are
ultrafast (femtosecond).

However, the fastest linear response time τc of SPs, as any other linear response system,
depends not on the relaxation time but solely on the bandwidth. In fact, it can be calculated
as a quarter period (i.e., a time interval between zero and the maximum field) of the beating
between the extreme spectral components of the plasmonic oscillations,

τc =
1
4

2π
Δω

, (8)

where Δω is the spectral bandwidth of the plasmonic spectrum. For gold and silver, this band-
width is the entire optical spectrum, i.e., h̄Δω ≈ 3.5 eV. If aluminum is included among system’s
plasmonic metals, this bandwidth is increased to h̄Δω ≈ 9 eV. This yields this coherent reaction
time τc ∼ 100 as. Thus nanoplasmonics is potentially attosecond science.

While the characteristic size of a nanoplasmonic system should be limited from the top by
the skin depth, R � ls, it is also limited from the bottom by the so called nonlocality length
lnl – see, e.g., [32, 33]. This nonlocality length is the distance that an electron with the Fermi
velocity vF moves in space during a characteristic period of the optical field,

lnl ∼ vF/ω ∼ 1 nm , (9)

where an estimate is shown for the optical region. For metal nanoparticles smaller than lnl , the
spatial dispersion of the dielectric response function and the related Landau damping cause
broadening and disappearance of SP resonances [32, 33].

Thus, we have arrived at the basic understanding of the qualitative features of nanoplasmon-
ics. Consider a plasmonic nanosystem whose size R satisfies a condition lnl � R � ls. This
nanosystem is excited by an external field in resonance. In this case, the local optical field in
the vicinity of such a nanosystem is enhanced by a factor ∼ Q, which does not depend on R.
The spatial extension of the local field scales with the size of the nanosystem ∝ R. This is be-
cause R � ls, and ls is the smallest electromagnetic length; thus there is no length in the system
that R can be comparable to. When the external field changes, the local field relaxes with the
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relaxation time Q/ω that does not depend on R; the lifetimes of the SP are in the femtosecond
range.

In many cases of fundamental and applied significance, the size of a nanosystem can be
compoarable to or even greater than ls but still subwavelength, λ � R � ls. In such a case, the
coupling to far-field radiation and radiative losses may greatly increase as we will discuss below
in Secs. 2.2 and 2.3. Another important subfield of nanoplasmonics that is related to extended
systems is the surface plasmon polaritons – see, e.g., a collective monograph [34]. We consider
some polaritonic phenomena relevant to coherent control below in Sec. 4.5.

2.2. Nanoantennas

Consider a molecule situated in the near-field of a metal plasmonic nanosystem. Such a
molecule interacts not with the external field but with the local optical field E(r) at its loca-
tion r. The interactions Hamiltonian of such a molecule with the optical field is H′ =−E(r)d,
where d is the dipole operator of this molecule. Note that a modal expansion of the quantized
local field operator is given below in this article by Eq. (61).

Consequently, the enhanced local fields cause enhancement of radiative and nonradiative pro-
cesses in which such a molecule participate. In particular, the rates of both the excitation and
emission are enhanced proportionality to the local field intensity, i.e., by a factor of ∼ Q2. This
effect is often referred to as nanoantenna effect [35–62] in analogy with the common radio-
frequency antennas For the recent review of the concept and applications of optical nanoanten-
nas see Ref. [63]. Currently, the term nanoantenna or optical antenna is used so widely that it
has actually became synonymous with the entire field of nanoplasmonics: any enhancement in
nanoplasmonic systems is called a nanoantenna effect.

General remarks about the terms “nanoantenna” or “optical antenna” are due. The term “an-
tenna” has originated in the conventional radio-frequency technology where it is used in appli-
cation to receivers for devices that convert the wave energy of far-field radio waves into local
(near-field) electric power used to drive the input circuitry. For transmitters, antennas perform
the inverse transformation: from the local field electric power to that of the emitted radio waves.
Due to the general properties of time reversal symmetry there is no principal difference between
the receiving and transmitting antennas: any receiving antenna can work as a transmitting one
and vice versa. The mechanism of the efficiency enhancement in the radio frequency range is a
combination of spatial focusing (e.g., for parabolic antennas) and resonant enhancement (e.g.,
for a dipole antenna). In all cases, the size of the radio antenna is comparable to or greater
than the wavelength. Thus one may think that a receiving antenna collects energy from a large
geometric cross and concentrates it in a small, subwalength area.

The receiving antennas in radio and microwave technology are loaded by matched impedance
loads that effectively withdraw the energy from them. This suppresses the radiation by such
antennas but simultaneously dampens their resonances and makes them poor resonators.

In majority of cases, the optical antennas are not matched-loaded because they are designed
not to transduce energy efficiently but to create high local fields interacting with molecules
or atoms, which do not load these antennas significantly. (There are exceptions though: for
instance, the nanoantenna in Ref. [64] is loaded with an adiabatic nanofocusing waveguide.)
The unloaded antennas efficiently loose energy to radiation (scattering), which dampens their
resonances.

A question is whether this concept of collecting energy form a large geometric cross sec-
tion is a necessary paradigm also in nanoplasmonics. The answer is no, which is clear already
from the fact that the enhancement of the rates of both the excitation and emission of a small
chromophore (molecule, rear earth ion, etc.) in the near field of a small (R � ls) plasmonic
nanoparticle is ∼ Q2 and does not depend on the nanoparticle size R. This enhancement is due
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to the coherent resonant accumulation of the energy of the SPs during ∼ Q plasmonic oscilla-
tions and has nothing to do with the size of the nanoparticle. Thus such an enhancement does
not quite fit into the concept of antennas as established in the radio or microwave technology.

Another test of the nanoantenna concept is whether the efficiency of a nanoantenna is nec-
essarily increased with its size. The answer to this question is generally no. This is because
for plasmonic nanoparticles, with the increase of size there is also an increased radiative loss –
see below Sec. 2.3. In contrast, for many types of radio-frequency antennas (dish antennas or
microwave-horn antennas, for instance), the efficiency does increase with the size.

2.3. Radiative loss

As we described above in conjunction with Fig. 1 (c), the interaction of optical radiation with
a nanoplasmonic system occurs predominantly via the dipole oscillations. The radiative decay
of SPs occur via spontaneous emission of photons, which is a process that does not exist in
classical physics and requires a quantum-mechanical treatment. To find the radiative life time of
a SP state quantum-mechanically, we need to determine the transitional dipole matrix element
d0p between the ground state |0〉 and a single-plasmon excited state |p〉. To carry out such
a computation consistently, one needs to quantize the SPs, which we have originally done in
Ref. [29] and present below in Sec. 5.4.1.

However, there is a general way to do it without the explicit SP quantization, which we
present below in this Section. We start with the general expression for the polarizability α of a
nanosystem obtained using quantum mechanics – see. e.g., Ref. [65], which near the plasmon
frequency has a singular form,

α =
1
h̄

∣∣d0p
∣∣2

ω −ωsp
, (10)

where ωsp is the frequency of the resonant SP mode. This can compared with the corresponding
pole expression of the polarizability of a nanoplasmonic system, which is given below as Eq.
(55), to find absolute value of the the matrix element

∣∣d0p
∣∣.

Here, for the sake of simplicity, we will limit ourselves to a particular case of a nanosphere
whose polarizability is given by a well-known expression

α = R3 εm(ω)− εd

εm(ω)+2εd
, (11)

where R is the radius of the nanosphere. The SP frequency ω = ωsp corresponds to the pole of
α , i.e., it satisfies an equation

Reεm(ωsp) =−2εd , (12)

where we neglect Imεm. In the same approximation, near ω = ωsp, we obtain from Eq. (11),

α =−3R3εd

[
(ω −ωsp)

∂Reεm(ωsp)

∂ωsp

]−1

. (13)

Comparing the two pole approximations of Eqs. (10) and (13), we obtain the required ex-
pression for the dipole moment of a quantum transition between the ground state and the SP
state, ∣∣d0p

∣∣2 = h̄3R3εd

[
∂Reεm(ωsp)

∂ωsp

]−1

. (14)

Consider the well-known quantum-mechanical expression for the dipole-radiation rate (see,
e.g., Ref. [65]),

γ(r) =
4
3

ω3√εd

h̄c3

∣∣∣(d)0p

∣∣∣2 . (15)
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Fig. 4. Ratio of the the rates of the total to internal loss, γ(tot)
/

γ , for a nanosphere as a

function of its radius R for (a) silver and (b) gold. The blue, green, and red lines correspond
to the embedding dielectric with εd = 1,2, and 5, respectively. The computations are made
at the SP frequency ωsp, which for these value of εd is for silver h̄ωsp = 3.5,3.2,2.5 eV,
and for gold h̄ωsp = 2.6,2.4,2.0 eV, correspondingly.

Substituting Eq. (14) into (15), we obtain the desired expression for the quantum-mechanical
rate of the radiative decay of the SP state as

γ(r) = 4ε3/2
d

(
ωspR

c

)3 [∂Reεm(ωsp)

∂ωsp

]−1

. (16)

Note that for losses not very large (which is the case in the entire plasmonic region for noble
metals), the Kramers-Kronig relations for εm(ω) predict [28] that

∂Reεm(ωsp)

∂ωsp
> 0 , (17)

which guarantees that γ(r) > 0 in Eq. (16).
Comparing this expression to Eq. (3) [see also Eq. (49)], we immediately conclude that, in

contrast to the internal (radiationless) loss rate γ , the radiative rate is proportional to the volume
of the system (i.e., the number of the conduction electrons in it), which is understandable.
Thus for systems small enough, the radiative rate can be neglected.The quality factor of the SP
resonance is actually defined by the total decay rate γ(tot) [cf. Eq. (5)],

Q =
ωsp

2γ(tot)
, γ(tot) = γ + γ(r) . (18)

Therefore, Q is lower for larger nanoparticles, tending to a constant for small R. To quantify it,
we find a ratio

γ(tot)

γ
= 1+

4
Imεm(ωsp)

(√
εdωspR

c

)3

. (19)

We illustrate behavior of this rate ratio of the total to internal loss, γ(tot)
/

γ , in Fig. 4. General

conclusion is that the radiative loss for silver is not very important for nanospheres in the true
quasistatic regime, i.e., for R < ls ≈ 25 nm but is a dominant mechanism of loss for R > 30 nm,
especially in high-permittivity environments. In contrast, for gold the radiative loss is not very
important in the quasistatic regime due to the much higher intrinsic losses, except for a case of
a relatively high ambient permittivity, εd = 5 .
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Though it is outside of the scope of this article, we would like to point out that there is a
general approach to combat radiative losses in relatively large nanoparticles. This is related to
the well-known Fano resonances originally discovered by Ugo Fano in atomic spectra [66].
These resonances can be described in the following way. In certain cases of optical excitation,
when two quantum paths lead to the same final quantum state of the system, the resonance
peaks have specific asymmetric line shapes due to the interference of these quantum paths.

An analogous phenomenon is also known in nanoplasmonics and metamaterials [67–75].
They can be explained in the following way [75]. Apart from bright plasmonic resonances with
high transitional dipole moment, there are also dark ones [76], which by themselves are not
very prominent in optical spectra. However, if a bright resonance and a dark resonance coex-
ist in a certain spectral range – which is not unlikely, because the bright resonances are wide
spanning relatively wide wavelength ranges – then their optical fields interfere. This interfer-
ence significantly enhances the manifestation of the dark resonance: it acquires strength from
the bright resonance and shows itself as an asymmetric peak-and-dip profile characteristic of a
Fano resonance. An important, albeit counterintuitive, property of the Fano resonances is that,
exactly at the frequency of the Fano dip, the hot spots of the nanolocalized optical fields in
the nanosystem are strongest. This is because at this frequency the nanosystem emits mini-
mal light intensity and, consequently, it does not wastefully deplete the energy of the plasmon
oscillations. This leads to a decreased radiative loss and a high quality resonance quality factor.

Thus at the frequency of a Fano resonance, the radiative loss is significantly suppressed. The
width of the Fano resonances is ultimately determined by the internal (Ohmic) losses described
by Imεm. Summarizing, the Fano resonances enable one using relatively large nanoplasmonic
particles or plasmonic metamaterials to achieve narrow spectral features with high local fields.
These can be applied to plasmonic sensing and to produce spasers and nanolasers – see Sec. 5.

2.4. Other important issues of plasmonics in brief

There are other very important issues and directions of investigation in plasmonics that we will
not be able to review in any details in this article due to the limitations of time and space. Below
we will briefly list some of them.

2.4.1. Enhanced mechanical forces in nanoplasmonic systems

The resonantly enhanced local fields in the vicinity of plasmonic nanoparticles lead to enhanced
nanolocalized forces acting between the nanoparticles, see, e.g., Refs. [77–83]. A perspective
application of plasmonically-enhanced forces is optical manipulation (tweezing) of micro- and
nanoparticles [84–90].

Another direction of research is opened up by the recently introduced theoretically surface-
plasmon-induced drag-effect rectification (SPIDER) [91], which is based on transfer of the
linear momentum from decaying surface-plasmon polaritons (SPPs) to the conduction electrons
of a metal nanowire. The SPIDER effect bears a promise to generate very high terahertz fields
in the vicinity of the metal nanowire.

2.4.2. Interaction between electrons and surface plasmons

The surface plasmonics, as it is called today, originated by a prediction of electron energy
losses for an electron beam in thin metal films below the energy of the bulk plasmons [92].
This is how coherent electronic excitations called SPPs today were predicted. Soon after this
prediction, the SPP-related energy losses were experimentally confirmed [93,94]. Presently, the
electron energy loss spectroscopy (EELS) in nanopalsmonics is a thriving field of research. We
refer to a recent review [95] for further detail.
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A distinct and original direction of research is control of mechanical motion of metal
nanoparticles using electron beams [96]. It is based on the same principles as optically-induced
forces. The difference in this case is that the SP oscillations in nanoparticles are excited locally,
with an Angstrom precision, by a beam of fast electrons – see also Sec. 2.4.1 above.

There are other important phenomena in plasmonics based on electron-SP interaction called
nonlocality [97]. One of them is dephasing of plasmons causing their decay into electron-hole
pairs, which is called Landau damping, contributing to Imεm. There is necessarily a related
phenomenon of spatial dispersion contributing to Reεm. These become important for plasmon-
ics when the size of the nanosystem become too small, R � lnl – see Eq. (9). The nonlocality
and Landau damping degrade plasmonic effects. The nonlocal effects lead to an increased de-
cay rate of dipolar emitters at metal surfaces [32] and limits resolution of plasmonic imaging,
making the so-called “perfect” lens [98] rather imperfect [33]. In aggregates, the nonlocality of
dielectric responses causes reduction of local fields and widening of plasmonic resonances [99].
These broadening effects have initially been taken into account purely phenomenologically
by adding an additional contribution to the width of plasmonic resonances ∼ A/τnl , where
A = const [100]. Practically, if the size of a nanoparticle is less then 3 nm, the non-local broad-
ening of the SP resonances is very significant; otherwise, it can be neglected in a reasonable
approximation.

The above-mentioned publications [32, 33, 97, 99] on the nonlocality phenomena are based
on a semi-phenomenological approach where the nonlocality is treated via applying additional
boundary conditions stemming from the electron scattering by the boundaries of the plasmonic
system. A more advanced approach to nonlocality in nanoplasmonics, albeit treatable only for
very small, R � 1 nm, nanoparticles, is based on an ab initio quantum-chemical approach of
time-dependent density functional theory (usually abbreviated as TD-DFT) [101–107].

It shows that while for larger particles and relatively large spacing between them (� 1 nm),
the semi-phenomenological models work quite well, for smaller nanoparticles and gaps the pre-
dicted local fields are significantly smaller. This is understandable because in ab initio theories
there are phenomena that are important in the extremely small nanosystem such as a significant
dephasing due to the stronger coupling between the collective plasmon and one-particle electron
degrees of freedom, discreetness of the one-electron spectrum, spill-out of the conduction-band
electrons (extension of their wave function outside of the lattice region) and the corresponding
undescreening of the d-band electrons, and simply the discreetness of the lattice.

In the latest set of publications, e.g., [106, 107], this approach is called quantum nanoplas-
monics. We would argue that this approach is traditionally called quantum chemistry because
what is found from the TD-DFT quantum-mechanically is the dielectric response (suscepti-
bility or polarizability) of the nanosystems. However, even to calculate theoretically the per-
mittivity of a bulk method, one has to employ quantum-mechanical many-body approaches
such as the random-phase approximation, self-consistent random-phase approximation (or GW-
aproximation), or TD-DFT, etc. The only difference from the above-sited works is that for bulk
metals the size effects are absent. Therefore permittivities can be adopted from experimental
measurements such as Ref. [30, 108].

Based on the arguments of the preceding paragraph, we would reserve the therm “quan-
tum plasmonics” for the subfields of nanoplasmonics studying phenomena related to quantum
nature and behavior SPs and SPPs. This term has been proposed in our 2003 paper [29] intro-
ducing the spaser as a quantum generator of nanolocalized optical fields – see Sec. 5 and refer-
ences sited therein. A related field of studies devoted to quantum behavior of single SPPs also
can reasonably be called quantum plasmonics as proposed later in Refs. [109, 110].

While the decay of SP excitations is usually a parasitic phenomenon, there are some effects
that completely depend on it. One of them is the SPIDER [91] mentioned above in Sec. 2.4.1.
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It is based on the transfer of the energy and momentum from SPPs to the conduction electrons,
which microscopically occurs through the decay of the SPPs into electron-hole pairs leading to
production of hot electrons.

Yet another range of phenomena associated with a plasmon-dephasing decay into incoherent
electron-hole pairs (Landau damping) has come to the forefront lately. This is the plasmon-
assisted and enhanced generation of a dc electric current due to rectification in Schottky diodes
involving hot electrons [59, 111–113]. This phenomenon is promising for applications to pho-
todetection and solar energy conversion. Note that the use of the Schottky contacts between the
plasmonic metal and a semiconductor permits one to eliminate a requirement that the photon
energy h̄ω is greater that the band gap. This is replaced by a much weaker requirement that h̄ω
is greater than a significantly lower Schottky-barrier potential [114].

2.4.3. Nonlinear photoprocesses in nanoplasmonics

As became evident from the first steps of what now is called nanoplasmonics, the enhanced
local fields in resonant metal nanosystems bring about strongly enhanced nonlinear responses
[115–118].

Nonlinear nanoplasmonics is presently a very large and developed field. Some of its phe-
nomena related to coherent control and spasing are discussed in Secs. 4, and 5. Here we will
give a classification of the nonlinear nanoplasmonic phenomena and provide some examples,
not attempting at being comprehensive.

Nonlinearities in nanoplasmonics can occur in the nanostructured plasmonic metal, in the
embedding medium (dielectric), or in both. Correspondingly, we classify them as intrinsic, ex-
trinsic, or combined. As an independent classification, these nonlinearities can be classified
as weak (perturbative) or strong (nonperturbative). The perturbative nonlinearities can be co-
herent (or parametric), characterized by nonlinear polirizabilities [119] and incoherent such
as nonlinear absorption, two-photon fluorescence, surface-enhanced hyper-Raman scattering
(SEHRS) [120], nonlinear photo-modification, two-photon electron emission [121], etc.

Let us give some examples illustrating a variety of nonlinear photoprocesses in nanoplas-
monics.

• Second-harmonic generation from nanostructured metal surfaces and metal nanoparticles
[55, 122–130] is a coherent, perturbative (second-order or three-wave mixing), intrinsic
nonlinearity.

• Enhanced four wave mixing (sum- or difference frequency generation) at metal surfaces
[131] is a coherent, perturbative (third-order or four-wave), intrinsic nonlinearity.

• Another four-wave mixing process in a hybrid plasmonic-photonic waveguide involves
nonlinearities in both metal and dielectric [132] and, therefore, is classified as a coherent,
combined, perturbative third-order nonlinear process.

• An all-optical modulator consisting of a plasmonic waveguide covered with CdSe quan-
tum dots [133] is based on a perturbative third-order, combined nonlinearity. To the same
class belongs a nanoscale-thickness metamaterial modulator [134].

• An ultrafast all-optical modulator using polaritons in an aluminum plasmonic waveguide
is based on perturbative third-order, intrinsic nonlinearity [135]. There are arguments that
this nonlinearity is incoherent, based on interband population transfer of carriers [135].

• Nonperturbative (strong-field), coherent, extrinsic nonlinearity is plasmon-enhanced gen-
eration of high harmonics [136] where the enhanced nanoplasmonic fields excite argon
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atoms in the surrounding medium. Spaser [29] belongs to the same class where the non-
linearity is the saturation of the gain medium by the coherent plasmonic field [137]. The
same is true for the loss compensation by gain [138,139].

• Intrinsic perturbative nonlinearities in nanoplasmonics stemming from a redistribution
of the electron density caused by the ponderomotive forces of nanoplasmonic fields have
been predicted for surface plasmon polaritons [91, 140]. An intrinsic nonperturbative
nonlinear process is the predicted plasmon soliton [141] where strong local optical fields
in a plasmonic waveguide cause a significant redistribution of the conduction-electron
density.

• There are also relevant strongly-nonlinear processes in non-plasmonic materials that are
based on nanolocalized fields and are very similar to those in plasmonics. Among them
are near-field enhanced electron acceleration from dielectric nanospheres with intense
few-cycle laser fields [142]. Another such a process is a strong optical-field electron
emission from tungsten nanotips controlled with an attosecond precision [143].

• Finally, a recently predicted phenomenon of metallization of dielectrics by strong optical
fields [144, 145] belongs to a new class of highly-nonlinear phenomena where strong
optical fields bring a dielectric nanofilm into a plasmonic metal-like state.

3. Nanolocalized surface plasmons (SPs) and their hot spots

3.1. SPs as eigenmodes

Assuming that a nanoplasmonic system is small enough, R� λ ,R� ls, we employ the so-called
quasistatic approximation where the Maxwell equations reduce to the continuity equation for
the electrostatic potential ϕ(r),

∂
∂r

ε(r)
∂
∂r

ϕ(r) = 0 . (20)

The systems permittivity (dielectric function) varying in space is expressed as

ε(r) = εm(ω)Θ(r)+ εd [1−Θ(r)] . (21)

Here Θ(r) is the so-called characteristic function of the nanosystem, which is equal to 1 when
r belongs to the metal and 0 otherwise. We solve this equation following the spectral theory
developed in Refs. [76, 146, 147].

Consider a nanosystem excited by an external field with potential ϕ0(r) at an optical fre-
quency ω . This potential is created by external charges and, therefore, satisfies the Laplace
equation within the system,

∂ 2

∂r2 ϕ0(r) = 0 . (22)

We present the field potential as

ϕ(r) = ϕ0(r)+ϕ1(r) , (23)

where ϕ1(r) is the local field.
Substituting Eq. (23) into Eq. (20) and taking Eqs. (21) and (22) into account, we obtain

a second-order elliptic equation with the right-hand side that describes the external excitation
source,

∂
∂r

Θ(r)
∂
∂r

ϕ1(r)− s(ω)
∂ 2

∂r2 ϕ1(r) =− ∂
∂r

Θ(r)
∂
∂r

ϕ0(r) , (24)
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where s(ω) is Bergman’s spectral parameter [146] defined by Eq. (4).
As a convenient basis to solve this field equation we introduce eigenmodes (SPs) with eigen-

functions ϕn(r) and the corresponding eigenvalues sn, where n is the full set of indices that
identify the eigenmodes. These eigenmodes are defined by the following generalized eigen-
problem,

∂
∂r

Θ(r)
∂
∂r

ϕn(r)− sn
∂ 2

∂r2 ϕn(r) = 0 , (25)

where the eigenfunctions ϕn(r) satisfy the homogeneous Dirichlet-Neumann boundary condi-
tions on a surface S surrounding the system. These we set as

ϕ1(r)|r∈S = 0 , or n(r)
∂
∂r

ϕ1(r)

∣∣∣∣
r∈S

= 0 , (26)

with n(r) denoting a normal to the surface S at a point of r. These boundary conditions (26) are
essential and necessary to define the eigenproblem.

From Eqs. (25)-(26) applying the Gauss theorem, we find

sn =

∫
V Θ(r)

∣∣∣ ∂
∂r ϕn(r)

∣∣∣2 d3r

∫
V

∣∣∣ ∂
∂r ϕn(r)

∣∣∣2 d3r
. (27)

From this equation, it immediately follows that all the eigenvalues are real numbers and

1 ≥ sn ≥ 0 . (28)

Physically, as one can judge from Eq. (27), an eigenvalue of sn is the integral fraction of the
eigenmode (surface plasmon) intensity |∂ϕn(r)

/
∂r
∣∣2 that is localized within the metal.

Because the SP eigenproblem is real, and all the eigenvalues sn are all real, the eigenfunctions
ϕn can also be chosen real, though are not required to be chosen in such a way. Physically, it
means that the quasistatic nanoplasmonic eigenproblem is time-reversible.

For the eigenproblem (25)-(26), we can introduce a scalar product of any two functions ψ1

and ψ2 as

(ψ1|ψ2) =
∫

V

[
∂
∂r

ψ∗
2 (r)
][

∂
∂r

ψ1(r)
]

d3r , (29)

This construct possesses all the necessary and sufficient properties of a scalar product: it is
a binary, Hermitian self-adjoined, and positive-defined operation. It is easy to show that the
eigenfunctions of Eqs. (25)-(26) are orthogonal. They can be normalized as

(ϕn|ϕm) = δnm , (30)

3.2. Inhomogeneous localization of SPs and hot spots of local fields

One of the most fundamental properties of eigenmodes is their localization. By nature, the SP
eigenmodes of small nanoplasmonic systems are localized and non-propagating. This generally
follows from the fact that the eigenproblem (25) is real and has real eigenvalues, implying time-
reversal invariance and, consequently, zero current carried by any eigenmode.

From the early days of nanoplasmonics, there has been keen attention paid to the localization
of SP eigenmodes, because it was immediately clear that that absence of any characteristic
wavelength of the localized SPs leads to the possibility of their concentration in nanoscopic
volumes of the space [115,118,148]. Many early publications claimed that the SPs in disordered
nanoplasmonics systems, e.g., fractal clusters, experience Anderson localization [149–155].
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Fig. 5. Near-field intensity of eigenmodes computed for cluster-cluster aggregate (CCA)
cluster. Square of the eigenmode electric field |En|2 is displayed against the projection of
the cluster for two eigenmodes with close eigenvalues: (a) sn = 0.3202 and (b) sn = 0.3203.
For silver embedding medium with a permittivity εd ≈ 2.0, which is an approximate value
for for water, these modes correspond to a blue spectral range with h̄ω ≈ 3.13 eV. Adapted
from Ref. [156].

However, a different picture of the SP localization, named inhomogeneous localization, has
been introduced [76, 156–159]. In this picture of inhomogeneous localization, eigenmodes of
very close frequencies with varying degree of localization, from strongly localized at the min-
imum scale of the system to delocalized over the entire nanosystem coexist. This phenomenon
of inhomogeneous localization has been experimentally confirmed recently [160]. The eigen-
modes experiencing the Anderson localization are dark, corresponding to dipole-forbidden tran-
sitions, and thus can only be excited from the near field [76].

A related phenomenon is the formation of hot spots in local fields of nanoplasmonic system
that we introduced in Refs. [156, 157, 161, 162]. As characteristic of the inhomogeneous local-
ization, the energy is localized by different SP eigenmodes at vastly different scales. However,
it is the localization at the minimum scale that gives the highest local fields and energy density;
these tightly-localized modes are the most conspicuous in the near-field intensity distributions
as the hot spots. The hot spots exist in all kind of nanoplasmonic system but they are especially
strongly pronounced in disordered and aperiodic systems [163].

We will illustrate the hot spots and the inhomogeneous localization of the SP eigenmodes us-
ing the results of the original works that established the phenomena [156,157] using plasmonic-
metal fractal clusters as objects. The model of these fractals were the so-called cluster-
cluster aggregates (CCA) [164, 165]. In Fig. 5, we show two representative eigenmodes with
Bergman’s eigenvalues of sn = 0.3202 and sn = 0.3203, which are very close in frequency (the
blue spectral range for the case of silver in water). Both the eigenmodes are highly singular and
are represented by sharp peaks – hot spots – that may be separated by the distances from the
minimum scale of the system to the maximum scale that is on the order of the total size of the
entire system. These eigenmodes possess very different topologies but very close eigenvalues
and, consequently, have almost the same frequency h̄ω ≈ 3.13 eV corresponding to the blue
spectral range. This coexistence of the very different eigenmodes at the same frequency was
called the inghomogeneous localization [156,157].

The formation of host spots by the SP eigenmodes and the inhomogeneous localization of
the eigenmodes are very pronounced for the fractal clusters. However, the same phenomena
also take place in all dense random plasmonic systems. Physically, this phenomena is related to
the absence of the characteristic length scale for SPs: the smallest electromagnetic scale is the
skin depth ls ≈ 25 nm, which is too large on the scale of the system to affect the SP localization.
The inhomogeneous localization implies that eigenmodes can be localized on all scales but this
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Fig. 6. For a planar random composite (in the xz-plane), the density of the metal component
[panel (a)] and all eigenmodes plotted in the coordinates of oscillator strength Fn versus
localization radius Ln [panel (b)].

localization is always singular. The hot spots are the concentration regions of the optical energy:
sharp peaks on the minimum scale (“fine grain” size) of the system are most visible.

Note that there is a fundamental difference between the plasmonic hot spots and their coun-
terpart in the wave optics: speckles produced by scattering of laser light from a random medium.
In the speckle case, there is a characteristic size of the speckles on the order of a character dis-
tance Ls between them that is determined by diffraction:

Ls ∼ λD/A , (31)

where λ is wavelength of light, A is an aperture (cross-size of the coherent spot of light on the
scattering system), and D is the distance from the scatterer to the observation screen.

One of the plasmonic system models studied in significant detail is a random metal composite
(RPC) also called a semi-continuous metal film [76, 126, 147, 154, 160, 166–169]. This is a
planar system where metal occupies a given fill fraction f of the system’s volume. At a low f ,
the RPC is a system of remote randomly positioned metal particles. For high values of f , it is
an almost continuous film with rare holes in it. For f ≈ 0.5, there are percolation phenomena:
there is a large connected random cluster of the metal extending between the boundaries of the
system [170]. This connected percolation cluster is known to possess a fractal geometry.

To consider statistical measures of the SP localization, we introdude the localization radius
Ln of an eigenmode, which is is defined as the gyration radius of its electric field intensity
|En(r)|2, where

En(r) =− ∂
∂r

ϕn(r) (32)

is the eigenmode electric field, as

L2
n =
∫

V
r2|En(r)|2d3r−

(∫
V

r|En(r)|2d3r

)2

. (33)

We remind that due to Eq. (30), the eigenmode fields are normalized∫
V
|En(r)|2d3r = 1 , (34)

so Eq. (33) is a standard definition of the gyration radius.
In Fig. 6 (a), we show the smoothed, discretized nanostructure of one particular sample of a

RPC. This system is generated in the following way. We consider a volume of size, in our case,
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32×32×32 grid steps. In the central xz plane of this cube we randomly fill a cell of size 2×2
grid steps with metal with some probability f (fill factor or filling factor). Then we repeat this
procedure with other 2× 2 cells in that central xz plane. As a result, we arrive at a thin planar
layer of thickness 2 grid steps in the y direction and fill factor of f in the central xz plane.

In Fig. 6 (b), we display all of the eigenmodes (SPs) of the above-described RPC in a plot of
oscillator strength Fn versus localization length Ln. These eigenmodes are strikingly unusual.

First, there is a large number of eigenmodes with negligible oscillator strengths Fn � 10−5.
Note that the rounding-up relative error in our computations is ∼ 10−6, so these eigenmodes’
oscillator strengths do not significantly differ from zero. Such eigenmodes do not couple to
the far-field electromagnetic waves, and they can be neither observed nor excited from the
far-field (wave) zone. We call them dark modes. They can, however, be excited and observed
by NSOM (near-field scanning optical microscope) type probes in the near-field region. Such
eigenmodes are also important from the computational-mathematical point of view because
they are necessary for the completeness of the eigenmode set.

Second, in Fig. 6, there also are many eigenmodes with relatively large oscillator strengths,
Fn � 10−4, which we call luminous or bright modes. These do couple efficiently to the far-zone
fields.

Third, both the luminous and the dark modes have localization radii Ln with all possible
values, from zero to one half of the diagonal system size, and with very little correlation be-
tween Fn and Ln, except for the superlocalized (zero-size) eigenmodes that are all dark. This
wide range of Ln shows that the Anderson localization does not occur for most of the modes,
including all the luminous modes. Similar to these findings in certain respects, deviations from
the simple Anderson localization have been seen in some studies of the spatial structure of vi-
brational modes [171, 172], dephasing rates [173] in disordered solids induced by long-range
(dipole-type) interactions. A direct confirmation of this picture of the inhomogeneous local-
ization has been obtained in experiments studying fluctuations of the local density of states of
localized SPs on disordered metal films [160].

To gain more insight, we show in Fig. 7 the local electric field intensities |En(r)|2 for particu-
lar eigenmodes of four extreme types, all with eigenvalues very close to sn = 0.2. As a measure
of the eigenmode oscillator strength, we show a normalized oscillator strength Fn. The data of
Fig. 7 confirm the above-discussed absence of correlation between the localization length and
oscillator strength, and also show that there is no correlation between the topology of the local
field intensity and the oscillator strength—compare the pairs of eigenmodes: sn = 0.1996 with
sn = 0.2015, and sn = 0.2 with sn = 0.2011. Note that the large and random changes of the
intensities between the close eigenmodes evident in Fig. 7 is an underlying cause of the giant
fluctuations [174] and chaos [175–177] of local fields.

A fundamental property of the SP eigenmodes, whether localized or delocalized, is that they
may be thought of as consisting of hot spots. While the localized eigenmodes possess a single
tight hot spots, the delocalized ones consist of several or many host spots. Note that the fields in
the hot spots constituting a single eigenmode are coherent. In a sense, the hot spots are some-
what analogous to speckles produced by laser light scattered from a random system. However,
such speckles are limited by the half-wavelength of light and cannot be smaller than that. In
contrast, there is no wavelength limitations for the SP hot spots. They are limited only by the
minimum scale of the underlying plasmonic system.
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Fig. 7. Hot spots: Local field intensities |En(r)|2 of eigenmodes at the surface of the system
shown in Fig. 6, versus spatial coordinates in the xz plane.

3.3. Retarded Green’s function and field equation solution

Retarded Green’s function Gr(r,r′;ω) of field equation (24), by definition, satisfies the same
equation with the Dirac δ -function on the right-hand side,[

∂
∂r

Θ(r)
∂
∂r

− s(ω)
∂ 2

∂r2

]
Gr(r,r′;ω) = δ (r− r′) , (35)

We expand this Green’s function over the eigenfunctions ϕn using the orthonormality Eq.
(30), obtaining

Gr(r,r′;ω) = ∑
n

ϕn(r)ϕn(r′)∗

s(ω)− sn
. (36)

This expression for Green’s function is exact (within the quasistatic approximation) and con-
tains the maximum information on the linear responses of a nanosystem to an arbitrary exci-
tation field at any frequency. It satisfies all the general properties of Green’s functions due to
the analytical form of Eq. (36) as an expansion over the eigenmodes (surface plasmons). This
result demonstrates separation of geometry of a nanosystem from its material properties and
the excitation field. The eigenfunctions ϕn(r) and eigenvalues sn in Eq. (36) depend only on
geometry of the nanosystem, but not on its material composition or the optical excitation fre-
quency. In contrast, the spectral parameter s(ω) depends only on the material composition and
the excitation frequency, but not on the system’s geometry. One of the advantages of this ap-
proach is in its applications to numerical computations: the eigenproblem has to be solved only
once, and then the optical responses of the nanosystem are determined by Green’s function that
can be found by a simple summation in Eq. (36).

This Green’s function is called retarded because it describes responses that occur necessarily
at later time moments with respect to the forces that cause them. (Note that this name and prop-
erty have nothing to do with the electromagnetic retardation, which is due to the finite speed of
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light and is absent in the quasistatic approximation.) This property, also called Kramers-Kronig
causality, is mathematically equivalent to all singularities of Gr(r,r′;ω) as a function of com-
plex ω being situated in the lower half-plane. Consequently, Gr(r,r′;ω) as a function of ω
satisfies the Kramers-Kronig dispersion relations [28]. By the mere form of the spectral expan-
sion (36), this Green’s function satisfies all other exact analytical properties. This guarantees
that in numerical simulations it will possess these properties irrespectively of the numerical pre-
cision with which the eigenproblem is solved. This insures an exceptional numerical stability
of computational Green’s function approaches.

Once the Green’s function is found from Eq. (36), the local optical field potential is found as
contraction of this Green’s function with the excitation potential ϕ0(r) as

ϕ1(r) =−
∫

V
Gr(r,r′;ω)

∂
∂r′

Θ(r′)
∂

∂r′
ϕ0(r′)d3r′ . (37)

From Eqs. (23) and (37) using the Gauss theorem, we obtain an expression for the field potential
ϕ(r) as a functional of the external (excitation) potential ϕ0(r),

ϕ(r) = ϕ0(r)−
∫

V
ϕ0(r′)

∂
∂r′

Θ(r′)
∂

∂r′
Gr(r,r′;ω)d3r′ . (38)

Finally, differentiating this, we obtain a closed expression for the optical electric field E(r) as
a functional of the excitation (external) field E(0)(r) as

Eα(r) = E(0)
α (r)+

∫
V

Gr
αβ (r,r

′;ω)Θ(r′)E(0)
β (r′)d3r′ , (39)

where α,β , . . . are Euclidean vector indices (α,β , · · · = x,y,z) with summation over repeated
indices implied; the fields are

E(r) =−∂ϕ(r)
∂r

, E(0)(r) =−∂ϕ0(r)
∂r

, (40)

and the tensor (dyadic) retarded Green’s function is defined as

Gr
αβ (r,r

′;ω) =
∂ 2

∂ rα ∂ r′β
Gr(r,r′;ω) . (41)

One of the exact properties of this Green’s function is its Hermitian symmetry,

Gr
αβ (r,r

′;ω) = Gr
βα(r

′,r;−ω)∗ . (42)

If the excitation is an optical field, its wave front is flat on the scale of the nanosystem, i.e.,
E(0) = const. Then from Eq. (39) we get

Eα(r) =
[
δαβ +gαβ (r,ω)

]
E(0)

β , (43)

where the local field enhancement (tensorial) factor is a contraction of the retarded dyadic
Green’s function,

gαβ (r,ω) =

∫
V

Gr
αβ (r,r

′;ω)Θ(r′)d3r′ . (44)
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3.4. SP modes as resonances

Each physical eigenmode is described by the corresponding pole of Green’s function (36).
Close to such a pole, Green’s function and, consequently, local fields (43) become large, which
describes the surface plasmon resonance of the nanosystem. A complex frequency of such a
resonance can be found from the position of the corresponding pole in the complex plane of
frequency,

s(ωn − iγn) = sn , (45)

where ωn is the real frequency of the surface plasmon, and γn is its spectral width (relaxation
rate).

Note that we presume γn > 0, i.e., a negative sign of the imaginary part of the physical
surface frequency. This a presumption, which is confirmed by the solution presented below
in this Section, is based on the standard convention of the sign of an exponential in the field
temporal evolution,

En(r, t) ∝ exp [−i(ωn − iγn)t] ∝ exp(−γnt) , (46)

which decays exponentially for t →+∞, as should be. The wave functions of physical surface
plasmons are the familiar eigenfunctions ϕn(r), i.e., those of the geometric eigenmodes. How-
ever, their physical frequencies, of course, depend on the material composition of the system.

For weak relaxation, γn � ωn, one finds that this real surface plasmon frequency satisfies an
equation

Re[s(ωn)] = sn , (47)

and that the surface plasmon spectral width is expressed as

γn =
Im[s(ωn)]

s′n
, s′n ≡

∂Re[s(ω)]

∂ω

∣∣∣∣
ω=ωn

. (48)

In terms of the dielectric permittivity as functions of frequency

s′(ω) =
εd

|εd − ε(ω)|2 Re
∂εm(ω)

∂ω
, γ(ω) =

Imεm(ω)

Re ∂εm(ω)
∂ω

. (49)

This expression has been given in Sec. 2.1 as Eq. (3). Importantly, the spectral width γ is
a universal function of frequency ω and does not explicitly depend on the eigenmode wave
function ϕn(r) or system’s geometry. However, the system’s geometry does, of course, define
the plasmon eigenfrequencies ωn. This property has been successfully used in Ref. [178] where
a method of designing nanoplasmonic systems with desired spectra has been developed. Note
also that the classical SPs have been quantized in Ref. [29] in connection with the prediction of
spaser, a nanoscale counterpart of laser (see Sec. 5).

As follows from Eq. (28), external frequency ω is within the range of the physical sur-
face plasmon frequencies and, therefore, can be close to a surface plasmon resonance [pole of
Green’s function (36) as given by Eq. (45)] under the following conditions

0 ≤ Res(ω)≤ 1 , Ims(ω)� Res(ω) . (50)

These conditions are equivalent to

εd > 0 , 0 ≤ Reεm(ω)< 0 , Imεm(ω)� |Reεm(ω)| . (51)

These conditions, in fact, constitute a definition of a plasmonic system, i.e., a system where a
position of surface plasmon resonance can be physically approached: the dielectric permittivity
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of the metal component should be negative and almost real, while the permittivity of the second
constituent (dielectric) should be positive, as assumed.

It is useful to write down an expression for Green’s function (36) that is asymptotically valid
near its poles, which can be obtained from Eqs. (47) and (48) as

Gr(r,r′;ω) =
1

s′(ω) ∑
n

ϕn(r)ϕn(r′)∗

ω −ωn + iγn
, (52)

where γn is given above by Eqs. (48) or (49). This expression constitutes what is called the
singular approximation or pole approximation of the Green’s function. When an excitation
frequency is in resonance with an SP frequency, i.e., ω =ωn, the Green’s function (52) increases
in magnitude by ∼ ωn/γn ∼ Q times, where the quality factor Q is given by Eq. (5).

Below, for the sake of reference, we give a modal expansion for the polarizability α of a
nanoplasmonic system as a tensor,

ααβ =− εd

4π ∑
n

1
sn(s− sn)

Mnα M∗
nβ , (53)

where the indexes α,β denote Cartesian components, and Mn is a coupling vector defined as

Mn =−
∫

V
Θ(r)

∂ϕn(r)
∂r

d3r . (54)

Near a SP frequency, ω ≈ ωn, a singular part of the polarizability (53) acquires a form

ααβ =− εd

4πs′nsn

Mnα M∗
nβ

ω −ωn + iγn
. (55)

3.5. Examples of local fields and their hot spots

Let us give an example of local fields computed using Eq. (39). We start with the results of the
original publications Ref. [156,157] where the hot spots of the plasmonic local fields have been
predicted. This prediction was made for fractal clusters because the fractals were expected to
possess highly inhomogeneous and fluctuating local optical fields as was shown in pioneering
papers in a subfield of physical optics that today is called nanoplasmonics [115,148,179].

In Fig. 8 adapted from Ref. [156], we illustrate the local-field hot spots for a silver CCA
cluster of N = 1500 identical nanospheres embedded in water. We show local field intensity
I = |E(r,ω)|2 relative to the excitation field intensity I0 at the surface of the silver nanospheres
at a relatively high frequency h̄ω = 3.13 eV corresponding to vacuum wavelength λ = 390
nm in the far blue end of the visible spectrum. We can clearly see that the local intensity is
highly non-uniform, exhibiting pronounced singular hot spots. These hot spots are localized at
the minimum scale of the system (on the order of the the radius of the nanospheres). The local
intensity in the hot spots is greatly enhanced (by a factor of up to ∼ 600) as one would expect
from an estimate I/I0 ∼ Q2 – cf. Fig. 2.

This hot spotting is nothing else as random nanofocusing. It is similar in this respect to
the formation of speckles in the wave optics, as we have discussed above in conjunction with
Fig. 5. However, reflecting the properties of the corresponding SP eigenmodes, there is no
characteristic wavelength that limits this hot spot singularity by defining the characteristic size
Ls of the speckles, which is also a characteristic separation between them – see Eq. (31).

Another property of the local fields of a great significance is the dramatic dependence of
the intensity distribution on the polarization: the local distributions or the x-polarization [Fig.
5 (a)] and y-polarization [panel (b)] are completely different. An experimental observation of
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as indicated in the panels. The projection of the cluster nanospheres to the xy plane is also
shown. Adapted from Ref. [156]
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Fig. 9. (a) Geometry of nanostructured random planar composite (RPC): characteristic
function Θ(r) is displayed in the xz plane of the RPC. Axes unit is nm; thickness of the
system in the y direction (normal to its plane) is 2 nm. The fill factor is p = 0.5. Charac-
teristic function Θ(r) is smoothed by a Gaussian filter with a radius of 1 nm to improve
numerical accuracy (shown in the panel by the halftone density). (b): Local field intensity
|E(r)|2 in the plane of the nanostructure displayed relative to the excitation field intensity
|E(0)|2; excitation frequency h̄ω = 1.55 eV; computed using Eq. (38). The metal is silver
embedded in the dielectric with εd = 2. (c): Same as (b) but for h̄ω = 2.0 eV. Adapted from
data computed for Ref. [180].

this effect has been obtained in Ref. [116] already at a very early stage of the development of
nanoplasmonics.

Note that the SP eigenmode geometry is also strongly dependent on its frequency – see Fig.
5. However, in externally-excited local fields, this frequency dependence is obscured by the
resonance broadening due to the losses, as is evident from the expression for the resonant part
of the Green’s function

We will present below spectral and statistical properties of the local fields using a model
of random planar composite (RPC). A specific RPC system used in the computation is shown
in Fig. 9(a). To improve numerical accuracy, we smooth the unit-step characteristic function
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Θ(r) with a Gaussian filter with a radius of 1 grid step: this dramatically improves numerical
accuracy of a grid method that we use to solve the eigenproblem. Such a smoothing is clearly
seen in Fig. 9 (a).

In Fig. 9 (b)-(c), we display the spatial distribution of the local field intensity |E(r)|2in the
plane of the nanostructure at the surface of the metal. These computations are described in
Ref. [180]. They are done for silver whose dielectric function is adopted from Ref. [30]; the
embedding dielectric has permittivity is set as εd = 2.0. This intensity is plotted relative to the
excitation field intensity |E0|2; thus the quantity displayed is the enhancement factor of the local
field intensity. Panel (b) shows the intensity computed from Eq. (38). The maximum of the local
intensity enhancement of ≈ 6000 is in a reasonable agreement with the estimate ∼ Q2 ∼ 104,
where Q is displayed in Fig. 2.

Dependence of the local fields on frequency is dramatic: cf. Figs. 9 (b) and (c). As frequency
increases from the near-IR (1.55 eV) to visible (2.0 eV), the distribution becomes much more
delocalized and its magnitude dramatically decreases, which cannot be explained by some de-
crease of quality factor Q alone. Most importantly, at all frequencies these near-field intensity
distributions are dominated by the pronounced hots spots. These are manifestation of the hot
spots of the SP eigenmodes – see Fig. 7.

Generally, the intensity distribution of local field intensity in Fig. 9 (b)-(c) is highly singular:
it consists of relatively narrow peaks (hot spots [157,162]) separated by regions of a low inten-
sity. This is a typical distribution of intensity in plasmonic nanosystems, which is a reflection
of the inhomogeneous localization of the SP eigenmodes.

3.6. Experimental examples of nanoplasmonic hot spots

There has been a significant number of experimental studies of near-field distributions of optical
fields in plasmonic nanostructures. In all cases, a pronounced picture of the hots spots [156,157]
has been exhibited, see, e.g., Refs. [121, 154, 167]. The inhomogeneous localization of the SP
eigenmodes (see Sec. 3.2), which is inherently related to hot spots, has recently been confirmed
experimentally [160].

The photoemission electron microscope (PEEM) is a powerful tool of analyzing the distribu-
tion of the local field intensity without perturbing it in any way. In the PEEM approach, the
plasmonic nanosystem to be analyzed serves as a cathode and an object of an electron micro-
scope. The electron emission is caused by the local field E(r,ω) of the plasmonic system. The
photoelectrons are analyzed by the electron optics of the PEEM that creates a magnified image
of the system in “light” of the photo-emitted electrons.

For silver, the work function Wf (i.e., the minimum energy needed to excite an electron from
the Fermi surface to the zero energy that is the energy in vacuum far away from the metal) is
approximately 4.2 eV. The highest energy of an optical quantum (at the vacuum wavelength of
390 nm) is 3.2 eV, i.e., it is significantly less than Wf . Thus, a single optical photon cannot emit
an electron from a silver surface. Such an emission can, however, occur through two-photon
absorption, leaving for the emitted electron the kinetic energy at infinity of E∞ ≤ 2h̄ω −Wf .
Such a two-photon electron photoemission is in the foundation of the so-called two-photon
photoemission PEEM (or, 2PP-PEEM). On the other hand, for ultraviolet radiation (say, from
a Hg lamp), the energy of a photon is sufficient for the one-photon photoemission PEEM (1PP-
PEEM). The 2PP-PEEM electron intensity mirrors the distribution of I2 = |E(r,ω)|4.

A model system to illustrate the hot spots used in a 2PP-PEEM experiment of Ref. [121] is
shown in Fig. 10 (a). This is a diffraction grating covered with silver layer with roughness of
a < 10 nm RMS grain size, as the scanning electron micrograph (SEM) shows in the insert.
The Hg lamp illumination (the energy of the quantum h̄ω = 4.89 eV exceeds Wf = 4.2 eV,
thus allowing one-photon photoemission, 1PP-PEEM) shows a smooth image of the underlying
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Fig. 10. PEEM micrographs of the same region on the silver grating obtained with (a)
254-nm line of a Hg lamp (1PP-PEEM) and (b) p-polarized 400-nm femtosecond laser
excitation (2PP-PEEM). A scanning electron micrograph (SEM) of the silver grating in
(a) is superimposed with the 1PP-PEEM image to show correspondence in the > 100 nm
scale topographical contrast. The surface roughness with < 10 nm RMS distribution in
the SEM image, which is too fine to resolve with the PEEM, gives rise to excitation of the
localized SP modes seen as the hot spots in the 2PP-PEEM image of (b). The blue rectangle
locates the four hot spots that were used for a coherent control experiment. Adapted from
Ref. [121].

f=0.45 f=0.65 f=0.73 f=0.83f=0.36

Fig. 11. NSOM images of 4× 4 μm2 semi-continuous silver films with different metal
filling fractions f as indicated above the graphs. Local intensity distribution is displayed as
a function of the spatial coordinates in the plane of the film. The white areas correspond to
higher intensities. Adapted from Ref. [167].

diffraction grating with the resolution of the PEEM (� 100 nm).
A dramatically different picture is observed in Fig. 10 (b). Tn this case, the irradiation is

with femtosecond laser pulses of λ = 400 nm vacuum wavelength. The corresponding energy
of the quantum is below the work function, h̄ω = 3 eV < Wf = 4.2 eV. Thus the electron
photoemission is two-photon. The corresponding 2PP-PEEM image in Fig. 10 (b) exhibits a
pronounced picture of the hot spots due to the fact that in this case the optical frequency is
in the plasmonic range. These hot spots are localized SPs that are excited by the p-polarized
radiation with a significantly greater efficiency than by an s-polarized one. This suggests that
SPPs excitation may play a role as an intermediate for the localized SP excitation. In a full
qualitative agreement with theory (see Sec. 3.2), these hot spots are singular, highly localized,
and randomly distributed in space. The local fields in these hot spots are highly enhanced as
witnessed by their dominance in the 2PP process.

We emphasize again that the PEEM-based observation of the plasmonic hot spots is com-
pletely non-perturbing. The photo-emitted electrons that are used in the PEEM fly away from
the metal surface naturally, no matter whether they are used for imaging or not.

There has also been a series of research dealing with the observation of the plasmonic hot
spots using the scanning near-field optical microscope (NSOM or SNOM) [154, 161, 167].
A general concern about such observation is that they are perturbative: the tip of NSOM (or
nanoscope, as it is often called) is typically much larger than a hot spot. Made of metal, it can,
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in principle, modify the host spot by both shifting its resonant frequency and decreasing the
quality factor.

As an example, we present Fig. 11 adapted from Ref. [167]. This study is done on the semi-
continuous metal film (random planar composite, or RPC). At relatively low values of the fill
factor, f = 0.36 and f = 0.45, the local intensity distribution I(r) shows relatively delocalized
regions elongated normally to the direction of propagation (vertical axis in the figure). These
are analogous to the caustics of the usual 3d optics. Relatively close to the percolation point,
f = 0.66 and f = 0.73, the distribution I(r) becomes highly localized exhibiting singular hot
spots. The behavior of I(r) at a relatively high fill factor of f = 0.83 again reminds that for the
low f showing delocalized caustics but not singular hot spots. This is understandable because
in this case the system is basically a smooth film with a few defects. This film supports SPPs
that are weakly scattered by the relatively few defects.

As we have discussed above in this Section, NSOM measurements of hot spots are inherently
perturbative. While PEEM is nonperturbative, the spatial resolution so far has been insufficient
(due to aberrations in the electron optics and large spread of the emitted electrons over their
energies). Additionally, PEEM requires clean surfaces in high vacuum.

A fundamentally different non-perturbing approach to studying nanoplasmonic hot spots
has been pioneered in Refs. [181, 182]. It is based on the so-called photon-localization super-
resolution far-field microscopy. This method of far-field super-resolution has originally been
developed in application to biological imaging [183].

This method’s fundamentals can be very briefly described as the following. Assume that there
is a single radiating chromophore (say, fluorescing molecule) in the view field of an optical mi-
croscope. Alternatively, there may be a number of such chromophores but their concentration
should be low enough so they are resolved separately by the microscope (i.e., the distance be-
tween these molecules are greater than the microscope’s resolution). The center of the emission
of such a single (or separately resolved) emitter can be found with any precision that is only
limited by statistical fluctuations of the number of the recorded photons but not by the resolu-
tion of the microscope provided that this microscope or the system under study do not change
in the course of the observation.

After the position and brightness of a given single molecule are recorded, this molecule is nat-
urally bleached. Then another molecule comes into the hot spot and its position and brightness
are recorded until it is bleached. The process is repeated until the distribution of the brightness
of emitters is built with a sufficient statistical precision.

It is assumed that the emission brightness of a single chromophore is proportional to the
local field intensity of the hot spot at its position and that this chromophore exerts a negligibly
weak perturbation on the local field of the hot spot. Thus this photon-localization nanoscopy is
a non-perturbative method allowing one to find the intensity distribution at the hot spot on the
nanoscale limited only by the statistical fluctuations (inversely proportional to the accumulation
time) and the size of the chromophore itself, which is negligible in realistic situations.

The results of the hot spot local intensity-distribution measurements for an aluminum surface
are shown in Fig. 12 (a). This distribution is a narrow peak with the width of ≈ 20 nm. The
observed fine structure of this distribution is attributed to statistical fluctuations [181]. The
cross section through this distribution displayed in Fig. 12 (b) suggests an exponential decay of
this distribution function in space with the FWHM = 20 nm.

Very similar results are obtained for the silver colloid clusters as shown in Figs. 12 (c)-
(d). Note that the aluminum surface studied is nominally smooth and contains only random
roughness while the silver colloid clusters are fractals whose density fundamentally possesses
large and correlated fluctuations.
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Fig. 12. Hot spots at the surfaces of metals measured by the photon localization method
(see the text). (a) and (b) Distribution of the local intensity for a hot spot at the surface
of aluminum. The kernel window size is 2.1 nm; this small window size makes the image
appear noisy. The dye is Chromeo-542 with excitation at 532 nm and the emission centered
around 580 nm. (b) An exponential decay field profile is visible, and is more evident on
a log scale, shown as almost a decade of straight line (red solid line). The blue and green
curves are two cross sections of the hot spot along x and y directions through the peak. The
FWHM of the spot is ∼ 20 nm. (c) and (d) is the same as (a) and (b), respectively, but for the
case of a silver metal colloid cluster precipitated on a surface. A Chromeo-642 dye (Active
Motif) – whose emission centers around 660 nm – is used. Adapted from Ref. [181].
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4. Ultrafast plasmonics and coherent control on nanoscale

4.1. Introduction

The nanoplasmonic processes can potentially be the fastest in optics: their shortest evolution
times are defined by the inverse spectral width of the region of the plasmonic resonances and
are on the order of 100 as [184], see also Sec. 2.1. The relaxation times of the SP excitations are
also ultrashort, in the 10−100 fs range [185–189]. See also the SP relaxation times for gold and
silver displayed in Fig. 3. The nanolocalization and such an ultrafast kinetics make plasmonic
nanostructures promising for various applications, especially for the ultrafast computations,
data control and storage on the nanoscale.

These and potentially many other applications require precise control over the optical exci-
tations of the nanostructures in time and space on the femtosecond-nanometer scale. Such a
control cannot be imposed by far-field focusing of the optical radiation because the diffraction
limits its dimension to greater than half wavelength. In other words, the optical radiation does
not have spatial degrees of freedom on the nanoscale. There is a different class of approaches
to control a system on nanoscale based on plasmonic nanoparticles or waveguides brought to
the near-field region of the system. Among these we mention: the tips of scanning near-field
optical microscopes [190], adiabatic plasmonic waveguides [12], nanowires [191, 192], plas-
monic superlenses [193] or hyperlenses [194]. In all these cases, massive amount of metal is
brought to the vicinity of the plasmonic nanosystem, which will produce strong perturbations
of its spectrum and SP eigenmodes, cause additional optical losses, and adversely affect the ul-
trafast dynamics and energy nanolocalization in the system. This nanowaveguide approach also
may not work because of the excitation delocalization due to the strong interaction (capacitive
coupling) at the nanoscale distances for optical frequencies.

We have proposed [195] a principally different approach to ultrafast optical control on the
nanoscale based on the general idea of coherent control. The coherent control of the quantum
state of atom and molecules is based on the directed interference of the different quantum
pathways of the optical excitation [196–205], which is carried out by properly defining the
phases of the corresponding excitation waves. This coherent control can also be imposed by an
appropriate phase modulation of the excitation ultrashort (femtosecond) pulse [202, 206–208].
Shaping the polarization of a femtosecond pulse has proven to be a useful tool in controlling
quantum systems [209].

Our idea of the coherent control on the nanoscale by the phase modulation of the excitation
pulse can be explained with a schematic shown in Fig. 13. Phase modulation of the excita-
tion pulse can be thought of as changing the frequency (color) light as the pulse progresses in
time. For the sake of argument, let us assume that, as shown in Fig. 13, that initially the pulse
contains blue colors that gradually change to red with the time progression. At earlier times,
the dominating blue component of the pulse will excite the SP eigenmodes with corresponding
high optical frequencies. As the pulse progresses, the lower-frequency eigenmodes are excited.
It is assumed that the the total duration τp of the pulse is less than the decay (decoherence) time
τ = γ−1 of the SPs , i.e.., τp � τ [for the decay rates and life times of the SPs see Eq. (3) or (49)
and Fig. 3]. In such a case, the SPs of different frequencies will coexist simultaneously, and
their fields will interfere. This interference depends on the relative phases and amplitudes of
the SPs of different frequencies that, in turn, are determined by the relative phases of different
spectral components of the excitation pulse. The ultimate goal of the spatio-temporal coherent
control on the nanoscale is to have a hot spot of the local fields at a given nanosite at a given
femtosecond temporal interval. Below in this article we show that this problem is solved both
theoretically and experimentally.

Another approach that we have proposed [210] invokes spatial modulation of the excitation
field on the microscale in a polaritonic system. This field excites SPPs whose phases are deter-
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Fig. 13. Schematic of the fundamentals of the coherent control of nanoscale optical energy
distribution. An excitation pulse is phase-modulated (shown by different colors changing
with the progression of the pulse), which may be qualitatively thought of as different fre-
quencies (colors) are incident on the nanosystem at different times, in a certain sequence.
The system (a fractal cluster) is indicated by its projection on the horizontal coordinate
plane. In response to this pulse, different SP eigenmodes are excited in a sequence. As time
progresses, these eigenmodes interfere between themselves leading to a hot spot appearing
at a required position at a given time. This leads to a large enhancement of the local field E
relative to the excitation field E0.

mined by those of the original field. This determines the wave fronts of the SPP waves that focus
on the nanoscale at the targeted nanofoci at the required times with femtosecond temporal res-
olution. The spatial-phase coherent control of the SPPs has been demonstrated experimentally
by different groups [211,212].

Our initial idea [195] has been subsequently developed theoretically [147,209,213,214] and
experimentally [121, 215–217]. In this coherent control approach, one sends from the far-field
zone a shaped pulse (generally, modulated by phase, amplitude, and polarization) that excites
a wide-band packet of SP excitations in the entire nanosystem. The phases, amplitudes, and
polarizations of these modes are forced by this shaped excitation pulse in such a manner that
at the required moment of time and at the targeted nanosite, these modes’ oscillations add in
phase while at the other sites and different moments of time they interfere destructively, which
brings about the desired spatio-temporal localization.

Theoretically, the number of the effective degrees of freedom that a shaped femtosecond
pulse may apply to a nanoplasmonic system can be estimated in the following way. The number
of the independent frequency bands is ∼ Δω/γ , where Δω is the bandwidth of the plasmonic
system. For each such a band, there are two degrees of freedom: amplitude and phase. Thus,
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the total number NDF of the degrees of freedom for coherent control can be estimated as

NDF ∼ 2
Δω
γ

. (56)

For a plasmonic system with the maximum bandwidth Δω ∼ ω , and Eq. (56) becomes

NDF ∼ 4Q , (57)

where we took into account Eq. (5). In the optical region for noble metals Q ∼ 100 (see Fig.
2), providing a rich, ∼ 100-dimensional space of controlling parameters. The coherent control
approach is non-invasive: in principle, it does not perturb or change the nanosystem’s material
structure in any way.

However, how to actually determine a shaped femtosecond pulse that compels the optical
fields in the nanosystem to localize at a targeted nanosite at the required femtosecond time
interval is a formidable problem to which until now there has been no general and effective
approach. To compare, our original chirped pulses possessed only two effective degrees of
freedom (carrier frequency ω0 and chirp) which allowed one to concentrate optical energy at the
tip of a V-shape structure vs. its opening [147,195]. Similarly, the two unmodulated pulses with
the regulated delay τ between them used in the interferometric coherent control [121,213,216]
also possess only two degrees of freedom (τ and ω0) and can only select one of any two local-
field hot spots against the other; it is impossible, in particular, to select one desired hot spot
against several others.

There exists another method based on the adaptive genetic algorithms [202]. However, its
application to the spatial-temporal localization in nanosystem is difficult due to the complexity
of the problem. To date, the only example is the spatial concentration of the excitation on one
arm of the three-pronged metal nanostar [215] where the obtained controlling pulses are very
complicated and difficult to interpret though the nanosystem itself is rather simple. A general
problem with this method is that the adaptive genetic algorithms are actually refined trial-and-
error methods; they do not allow one to obtain the required controlling pulses as a result of
the solution of a set of deterministic equations or an application of any regular deterministic
procedure such as Green’s function integration.

4.2. Time-reversal solution for coherent control

Our solution of this major problem of the coherent control, which is proposed and theoretically
developed in Ref. [218], is based on an idea of time-reversal that has originally been pro-
posed and used to control the focusing of acoustic waves and microwave radiation [219–221].
Some of these studies required use of a reverberating chamber to cause multiple interactions of
the waves with the system needed to transfer the information to the far field. The electromag-
netic subwavelength focusing also required a subwavelength-scale metal structure (a metal wire
brush) to be positioned in the vicinity of the target system as a focusing antenna. In contrast,
in nanoplasmonics there is no need for the reverberating chamber or the metal brush antenna,
because the plasmonic nanosystem plays the roles of both of them. It confines the plasmonic
modes for long times relative to their oscillation periods and also nano-localizes these modes.

4.3. Qualitative description of time-reversal coherent control

The idea of the time-reversal solution of the nanoscale coherent control can be described using
a schematic of Fig. 14. Consider a metal plasmonic nanosystem, indicated by blue in Fig. 14 (a),
which may be embedded in a host dielectric (or be in vacuum). The nanosystem is excited by
an external ultrafast (femtosecond) nanosource of radiation at its surface. As such we choose
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Fig. 14. (a) Geometry of nanosystem, initial seed oscillating dipole and its oscillation wave-
form. The nanosystem as a thin nanostructured silver film is depicted in blue. A position of
the oscillating dipole that initially excites the system is indicated by a double red arrow, and
its oscillation in time is shown by a bold red waveform. (b) Field in the far-field zone that
is generated by the system following the excitation by the local oscillating dipole: vector
{Ex(t),Ez(t)} is shown as a function of the observation time t. The color corresponds to
the instantaneous ellipticity as explained in the text in connection with Fig. (c) Same as in
panel (b) but for a time-reversed pulse in the far zone that is used as an excitation pulse to
drive the optical energy nanolocalization at the position of the initial dipole.

an oscillating dipole indicated by a double red arrow. This dipole generates a local optical
electric field shown by a bold red waveform. This field excites SP oscillations of the system in
its vicinity. In turn these oscillations excite other, more distant regions, and so forth until the
excitation spreads out over the entire system. The relatively long relaxation time of these SP
modes leads to the long “reverberations” of the plasmonic fields and the corresponding far-zone
optical electric field. The latter is shown in Fig. 14 (b) where one can see that a complicated
vector waveform is predicted. This waveform is time reversed, as shown in panel (c), and send
back to the system as an excitation plane wave from the far-field zone. If the entire field, in
the whole space including the near-field (evanescent) zone, were time reversed and the system
would have been completely time-reversible, which would imply the absence of any dielectric
losses, then the system would have been compelled by this field exactly to back-trace its own
evolution in time. This would have lead to the concentration of the local optical energy exactly
at the position of the initial dipole at a time corresponding to the end of the excitation pulse.

Indeed, the system is somewhat lossy, which means that it is not exactly time reversible. Nev-
ertheless, these losses are small, and one may expect that they will not fundamentally change
the behavior of the system. Another problem appear to be more significant: the evanescent fields
contain the main information of the nano-distribution of the local fields in the system, and they
cannot be time reversed from the far zone because they are exponentially small, practically lost
there. However, our idea is that the nanostructured metal system itself plays the role of the
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metal brush of Ref. [221] continuously coupling the evanescent fields to the far zone. Therefore
the fields in the far zone actually contain, in their reverberations, most information about the
evanescent fields that will be regenerated in the process of the time reversal.

We will illustrate this idea by considering a random planar composite (RPC) whose geometry
is shown in gray in the center of Fig. 15. In specific computations, as the plasmonic metal, we
consider silver whose dielectric permittivity εm we adopt from bulk data [30]. This system
has been generated by randomly positioning 2× 2× 2 nm3 metal cubes on a plane, which for
certainty we will consider as the xz coordinate plane. The random system shown in the center
of Fig. 15 has filling factor of f = 0.5.

The interaction of a nanosystem with electromagnetic pulses is described in Green’s function
approach using quasistatic approximation [147, 195, 222] – see Sec. 3.3. It is known that the
optical excitation energy in random plasmonic nanostructures localizes in “hot spots” whose
size is on the nanoscale and is determined by the minimum scale of the system inhomogeneities
[76, 157, 158, 223] – see Sec. 3.5.

Initially, to find positions of these hot spots in our system, we apply an ultrashort near-
infrared (near-ir) pulse whose spectral width was very large, covering a frequency band from
1.1 eV to 1.7 eV. The pulse polarization is along the z axis (the incidence direction is normal
to the plane of the nanostructure, i.e. along the y axis). The resulting optical electric field E is
expressed in terms of the external electric field of the excitation optical wave E0 and retarded
dyadic Green’s function Gr, as given by Eqs. (43)-(44).

The hot spots are always localized at the surface of the metal, predominantly at the periphery
of the system. Their intensities found as the result of these computations are depicted by colors
in the center of Fig. 15. The highest local intensity is indicated by red, and the lowest by blue in
the region surrounding the metal. We have selected eight of these hot spots for our computations
as denoted by letters A to H in the figure.

To generate the field in the far zone, we take a point dipole and position it at a surface of the
metal at point r0 at such a hot spot, as described in the discussion of Fig. 14 above. The near-
zone field EL(r, t) generated in response to this point dipole is found from Green’s function
relation

EL(r, t) =
4π
εd

∫
dt ′Gr(r,r0; t − t ′)d(r0, t

′) . (58)

Knowing this local electric field, we calculate the total radiating optical dipole moment of
the nanosystem in the frequency domain as

D(ω) =
1

4π

∫
d3r [εm(ω)− εd ]Θ(r)EL(r,ω) . (59)

Here and below, the frequency- and time-domain quantities, as indicated by their arguments ω
and t, are Fourier transforms of each other. The field in the far zone produced by this radiating
dipole is given by standard electrodynamic formula – see, e.g. §67 in Ref. [224]. The time-
reversed field is generated by time-reversed dipole DT (t) that is complex-conjugated in the
frequency domain, DT (ω) = D(ω)∗.

The dependence on time of the initial excitation dipole, d(r0, t) is set as an ultrashort
Gaussian-shaped pulse of 12 fs duration with the carrier frequency h̄ω0 = 1.2 eV. Following
the procedure described above, the fields shown in Figs. 14 and 15 have been calculated for the
radiation propagating in the y direction (normal to the plane of the nanostructure). These fields
simply copy the retarded time evolution of the emitting dipole.

At the completing stage of our calculations, the time-reversed excitation pulse is sent back to
the system as a plane wave propagating along the y direction (normal to the nanosystem plane).
To calculate the resulting local fields, we again use Green’s function Eq. (43) where the shaped
excitation pulse substitutes for field E0.
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Fig. 15. Schematic of plasmonic-nanosystem geometry, local fields, and pulses generated
in the far field. Central insert: The geometry of a nanosystem is shown by dark gray, and
the local fields in the region surrounding it are shown by colors. The highest local field
intensity is depicted by red and the lowest intensity is indicated by blue (in the rainbow
sequence of colors). Panels A-H: The excitation waveforms in the far fields obtained as
described in the text by positioning the initial excitation dipole at the metal surface at
the locations indicated by the corresponding lines. Coordinate vectors ρρρ of points A-H in
the xz plane are (in nm): ρρρA = (11,22), ρρρB = (7,16), ρρρC = (7,14), ρρρD = (7,10), ρρρE =
(9,7), ρρρF = (18,7), ρρρG = (20,9), and ρρρH = (24,11). The instantaneous degree of linear
polarization ε is calculated as the eccentricity of an instantaneous ellipse found from an
fit to a curve formed by vector {Ex(t),Ey(t)} during an instantaneous optical period. The
pure circular polarization corresponds to ε = 0 and is denoted by blue-violet color; the
pure linear polarization is for ε = 1 indicated by red. The corresponding polarization color-
coding bar is shown at the left edge of the figure.

4.4. Numerical results for time-reversal coherent control

The electric field of the excitation wave is chosen as a modulated waveform (including ampli-
tude, phase, and polarization modulation) that has been computed as described above in the
previous subsection. The optical excitation energy can only be concentrated at sites where SP
eigenmodes localize. For the present system, these are the hot spots shown by color in the
central insert of Fig. 15, labeled A-H. The corresponding calculated excitation waveforms are
displayed in panels as vector plots shown as functions of time {Ex(t),Ez(t)}.

There are several important features of these waveforms deserving our attention and dis-
cussion. First, these waveforms are rather long in duration: much longer than the excitation-
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dipole 12 fs pulses. This confirms our understanding that the initial dipole field excites local SP
fields that, in a cascade manner, excite a sequence of the system SPs, which ring down relatively
long time (over 200 fs, as shown in the figure). This long ring-down process is exactly what is
required for the nanostructure to transfer to the far-field zone the information on the near-zone
local (evanescent) fields as is suggested by our idea presented above in the introduction. The ob-
tained fields are by shape resembling the controlling pulses for the microwave radiation [221].
However, a fundamental difference is that in the microwave case the long ringing-down is due
to the external reverberation chamber, while for the nanoplasmonic systems it is due to the in-
trinsic evolution of the highly resonant SP eigenmodes that possess high Q-factors (setting a
reverberation chamber around a nanosystem would have been, indeed, unrealistic).

Second, one can see that the pulses in Fig. 15 have a very nontrivial polarization properties
ranging from the pure linear polarization (indicated by red as explained in the caption to Fig. 15)
to the circular polarization indicated by blue, including all intermediate degrees of circularity.
The temporal-polarization structure of pulses A-H in Fig. 15 is very complicated, somewhat
reminding that of Ref. [215], which was obtained by a genetic adaptive algorithm. However,
in our case these pulses are obtained in a straightforward manner, by applying the well-known,
deterministic Green’s function of the system, which is a highly efficient and fast method.

Third, and most important, feature of the waveforms in Fig. 15 is that they are highly site-
specific: pulses generated by the initial dipole in different positions are completely different.
This is a very strong indication that they do transfer to the far far-field zone the information
about the complicated spatio-temporal structure of the local, near-zone fields. This creates a
pre-requisite for studying a possibility to use these pulses for the coherently-controlled nano-
targeting.

Now we turn to the crucial test of the nanofocusing induced by the excitation pulses discussed
above in conjunction with Fig. 15. Because of the finite time window (T = 228 fs) used for
the time reversal, all these excitation pulses end and should cause the concentration of the
optical energy (at the corresponding sites) at the same time, t = T = 228 fs (counted from the
moment the excitation pulse starts impinging on the system). After this concentration instant,
the nanofocused fields can, in principle, disappear (dephase) during a very short period on
the order of the initial dipole pulse length, i.e. ∼ 12 fs. Thus this nanofocusing is a dynamic,
transient phenomenon.

Note that averaging (or, integration) of the local-field intensity I(r, t) = |E(r, t)|2 over time
t would lead to the loss of the effects of the phase modulation. This is due to a mathemat-
ical equality

∫ ∞
−∞ I(r, t)dt =

∫ ∞
−∞ |E(r,ω)|2dω/(2π), where the spectral-phase modulation of

the field certainly eliminates from the expression in the right-hand side. Thus the averaged
intensity of the local fields is determined only by the local power spectrum of the excitation
|E(r,ω)|2 and, consequently, is not coherently controllable. Very importantly, such a cancel-
lation does not take place for nonlinear phenomena. In particular, two-photon processes such
as two-photon fluorescence or two-photon electron emission that can be considered as propor-
tional to the squared intensity I2(r, t) = |E(r, t)|4 are coherently controllable even after time
averaging (integration), as we have argued earlier [147, 213]. Note the distributions measured
in nonlinear optical experiments with the detection by the PEEM [121,215,216,225] and in the
fluorescence upconversion experiments [226] can be modeled as such nonlinear processes that
yield distributions 〈In(r)〉 = ∫ ∞

−∞ In(r, t)dt/T , where n ≥ 2. Inspired by this, we will consider
below, in particular, the coherent control of the two-photon process averaged intensity

〈
I2(r)
〉
.

Let us investigate how precisely one can achieve the spatio-temporal focusing of the optical
excitation at a given nanosite of a plasmonic nanostructure using the full shaping (amplitude,
phase, and polarization) of the excitation pulses found from the time-reversal method. The
results for the present nanostructure, targeting sites A-H, are shown in Fig. 16. For each ex-
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Fig. 16. Spatial distributions of the local optical field intensities at the surface of the metal
nanostructure. Panels (a)-(h) correspond to the excitation with pulses A-H. Each such a dis-
tribution is displayed for the instance t at which the intensity for a given panel reaches its
global maximum in space and time. This time t is displayed at the top of the corresponding
panels. The corresponding targeted sites are indicated by arrows and labeled by the corre-
sponding letters A-H and the coordinates (x,z). No special normalization has been applied
so the distribution within any given panel is informative but not necessarily the magnitudes
of the intensities between the panels.
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Fig. 17. (a)-(h): Temporal dynamics of the local field Intensity I(r, t) = E2(r, t) at the
corresponding hot spots A-H. The down-arrows mark the target time t = 228 fs where
the local energy concentration is expected to occur.

citation pulse, the spatial distribution of the local field intensity is displayed for the moment
of time when this local intensity acquires its global (highest) maximum. The most important
conclusion that one can draw from comparing panels (a)-(h) is that for each pulse A-H this
global maximum corresponds to the maximum concentration of the optical energy at the corre-
sponding targeted nanosite A-H. This obtained spatial resolution is as good as 4 nm, which is
determined by the spatial size of inhomogeneities of the underlying plasmonic metal nanosys-
tem. It is very important that this localization occurs not only at the desired nanometer-scale
location but also very close to the targeted time that in our case is t = 228 fs. Thus the full
shaping of femtosecond pulses by the time reversal is an efficient method of controlling the
spatio-temporal localization of energy at the femtosecond-nanometer scale.

Let us turn to the temporal dynamics of intensity of the nanoscale local fields at the targeted
sites A-H, which is shown in Fig. 17 (a)-(h). As we can see, in each of the panels there is a
sharp spike of the local fields very close to the target time of t = 228. The duration of this

#151468 - $15.00 USD Received 20 Jul 2011; revised 5 Oct 2011; accepted 10 Oct 2011; published 24 Oct 2011
(C) 2011 OSA 24 October 2011 / Vol. 19,  No. 22 / OPTICS EXPRESS  22072



10 20 30
102030

0

10 20 30
102030

0

10 20 30
102030

0

10 20 30
102030

0

10 20 30
102030

0

10 20 30
102030

0

10 20 30
102030

0

10 20 30
102030

0

  G(20,9)

z                 x

  H(24,11)

  F(18,7)  E(9,7)

  C(7,14)   D(7,10)

  B(7,16)  
  A(11,22)  

2×106

6×107

3×107

1×107

5×106

z                 x

z                 x

z                 x z                 x

z                 x z                 x

4×106

2×104

4×104

5×103

1×104

5×104

1×105

z                 x

1×108

5×107

1×106

5×105

<I 2> <I 2>

<I 2> <I 2>

<I 2> <I 2>

<I 2><I 2> (a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 18. Spatial distributions of the time-averaged mean-squared intensity
〈
I2(r)
〉
. This

represents, in particular, the spatial distribution of the two-photon excited photocurrent
density. Panels (a)-(h) correspond to the excitation with pulses A-H. The corresponding
targeted sites are indicated by arrows and labeled by the corresponding letters A-H and
coordinates (x,z). No special normalization has been applied so the distribution within any
given panel is informative but not necessarily the magnitudes of the intensities between the
panels.
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spike in most panels [(a)-(f)] is close to that of the initial dipole, i.e., 12 fs. This shows a trend
to the reproduction of the initial excitation state due to the evolution of the time-reversed SP
packet induced by the shaped pulses. There is also a pedestal that shows that this reproduction
is not precise, which is expected due to the fact that the time reversal is incomplete: only the
far-zone field propagating in one direction (along the y axis) is reversed. Nevertheless, as the
discussion of Fig. 16 shows, this initial excitation-state reproduction is sufficient to guarantee
that the targeted (initial excitation) site develops the global maximum (in time and space) of the
local-field intensity. Interesting enough, the trend to reproduce the initial excitation state is also
witnessed by almost symmetric (with respect to the maximum points t = 228 fs) shapes of all
waveforms, which occurs in spite of the very asymmetric shapes of the excitation waveforms
[cf. Fig. 15].

Apart from the ultrafast (femtosecond) dynamics of the nanolocalized optical fields dis-
cussed above in conjunction with Figs. 16 and 17, there is a considerable interest in its the
time-integrated or averaged distributions, in particular, the mean squared intensity

〈
I2(r)
〉
.

This quantity defines the nanoscale spatial distribution of the incoherent two-photon pro-
cesses such as two-photon electron emission or two-photon luminescence. For example, in
some approximation, the spatial distribution of the two-photon electron emission recorded by
PEEM [121,215,216,225] is determined by

〈
I2(r)
〉
.

Now we test the spatial concentration of time-averaged mean-squared intensity
〈
I2(r)
〉

for
all sites, which is displayed in Fig. 18. As clearly follows from this figure, in all cases, there
are leading peaks at the targeted sites. Thus the two-photon excitation, even after the time
averaging, can be concentrated at desired sites using the coherent-control by the time-reversed
shaped pulses.

We point out that there has recently been an experimental demonstration of a coherent spa-
tiotemporal control on the nanoscale by polarization and phase pulse shaping [217]. The optical
energy concentration at a given site on a ∼ 50 nm spatial scale at a given time on a ∼ 100 fs
temporal scale has been demonstrated. Since this time scale is comparable to or longer than the
SP dephasing time, the time-reversal method could not be employed.

4.5. Coherent control by spatiotemporal pulse shaping

For coherent control on the nanoscale, as we have described above in Sec. 4, the phase of the
excitation waveform along with its polarization provide functional degrees of freedom to con-
trol the nanoscale distribution of energy [121,147,195,213–215,217,225,227]. Spatiotemporal
pulse shaping permits one to generate dynamically predefined waveforms modulated both in
frequency and in space to focus ultrafast pulses in the required microscopic spatial and fem-
tosecond temporal domains [228,229].

Here we follow Ref. [210] that has introduced a method of full coherent control on the
nanoscale where a temporally and spatially modulated waveform is launched in a graded nanos-
tructured system, specifically a wedge – see schematic of Fig. 19. Its propagation from the thick
(macroscopic) to the thin (nanoscopic) edge of the wedge and the concurrent adiabatic concen-
tration provide a possibility to focus the optical energy in nanoscale spatial and femtosecond
temporal regions.

This method unifies three components that individually have been developed and exper-
imentally tested. The coupling of the external radiation to the surface plasmon polaritons
(SPPs) propagating along the wedge occurs through an array of nanoobjects (nanoparticles
or nanoholes) that is situated at the thick edge of the wedge. The phases of the SPPs emit-
ted (scattered) by individual nanoobjects are determined by a spatio-temporal modulator. The
nanofocusing of the SPPs occurs due to their propagation toward the nanofocus and the con-
current adiabatic concentration [12, 230, 231].
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Fig. 19. Schematic of spatiotemporal coherent control on nanoscale. Adapted from Ref.
[210]. Independently controlled light beams (shown by blue cones) are focused on launch
pads depicted as silver spheres that are positioned on a thick edge of a wedge. SPP wavelets
generated by the launchpads are shown by black arcs. Normal to them are rays (SPP trajec-
tories) that are displayed by color lines coded accordingly to their origination points. These
wavefronts and trajectories converge at the nanofocus indicated by the red dot.

The coupling of the external radiation to SPPs and their nanofocusing have been observed –
see, e.g., Refs. [232,233]. The second component of our approach, the spatio-temporal coherent
control of such nanofocusing has been developed [228,229]. The third component, the adiabatic
concentration of SPPs also has been observed and extensively studied experimentally [13–16,
18, 19, 22].

The adiabatic concentration (nanofocusing) is based on adiabatic following by a propagat-
ing SPP wave of a graded plasmonic waveguide, where the phase and group velocities de-
crease while the propagating SPP wave is adiabatically transformed into a standing, localized
SP mode. A new quality that is present in this approach is a possibility to arbitrary move the
nanofocus along the nanoedge of the wedge. Moreover, it is possible to superimpose any num-
ber of such nanofoci simultaneously and, consequently, create any distribution of the nanolo-
calized fields at the thin edge of the wedge.

To illustrate this idea of the full spatiotemporal coherent control, now let us turn to a wedge
that contains a line of nanosize scatterers (say, nanoparticles or nanoholes) located at the thick
edge and parallel to it, i.e. in the x direction in Fig. 19. Consider first monochromatic light
incident on these nanoparticles or nanoholes that scatter and couple it into SPP wavelets. Every
such a scatterer emits SPPs in all directions; there is, of course, no favored directionality of the
scattering.

At this point, we assume that the excitation radiation and, correspondingly, the scattered
wavelets of the SPP are coherent, and their phases smoothly vary in space along the thick edge,
i.e., in the x direction. Then the SPP wavelets emitted by different scatterers will interfere,
which in accord with the Huygens-Fresnel principle leads to formation of a smooth wavefront
of the SPP wave at some distance from the scatterers in the “far SPP field”, i.e., at distances
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much greater than the SPP wavelength 2π/kSPP.
Such wavefronts are shown in Fig. 19 with concave black curves. The energy of the SPP is

transferred along the rays, which are the lines normal to the wavefronts, shown by the colored
lines. By the appropriate spatial phase modulation of the excitation radiation along the line of
scatterers (in the x direction) over distances of many SPP wavelengths, these wavefronts can be
formed in such a way that the rays intersect at a given point, forming a nanofocus at the thin
(sharp) edge of the wedge, as shown schematically in Fig. 19. Diffraction of the SPP waves will
lead to a finite size of this focal spot.

By changing the spatial phase profile of the excitation radiation, this focal spot can be arbi-
trarily moved along the thin edge. This focusing and adiabatic concentration, as the SPPs slow
down approaching the sharp edge, will lead to the enhancement of the intensity of the optical
fields in the focal region. This dynamically-controlled concentration of energy is a plasmonic
counterpart of a large phased antenna array (also known as an aperture synthesis antenna),
widely used in radar technology (synthetic aperture radar or SAR) and radio astronomy [234].

Now we can consider excitation by spatiotemporally shaped ultrashort pulses independently
in space. Such pulses are produced by spatio-temporal modulators [228, 229]. The field pro-
duced by them is a coherent superposition of waves with different frequencies whose ampli-
tudes and phases can arbitrarily vary in space and with frequency. This modulation can be
chosen so that all the frequency components converge at the same focal spot at the same time
forming an ultrashort pulse of the nanolocalized optical fields.

As an example we consider a silver [30] nanowedge illustrated in Fig. 19 whose maximum
thickness is dm = 30 nm, the minimum thickness is d f = 4 nm, and whose length (in the y di-
rection) is L = 5 μm. Trajectories calculated by the Wentzel-Kramers-Brillouin (WKB) method
in Ref. [210] for h̄ω = 2.5 eV are shown by lines (color used only to guide eye); the nanofocus
is indicated by a bold red dot. In contrast to focusing by a conventional lens, the SPP rays are
progressively bent toward the wedge slope direction.

Now consider the problem of coherent control. The goal is to excite a spatiotemporal wave-
form at the thick edge of the wedge in such a way that the propagating SPP rays converge
at an arbitrary nanofocus at the sharp edge where an ultrashort pulse is formed. To solve this
problem, we use the idea of back-propagation or time-reversal [220, 221, 235]. We generate
rays at the nanofocus as an ultrashort pulse containing just several oscillations of the optical
field. Propagating these rays, we find amplitudes and phases of the fields at the thick edge at
each frequency as given by the complex propagation phase (eikonal) Φ(ρρρ), where ρρρ is a 2-d
coordinate vector in the plane of the wedge. Then we complex conjugate the amplitudes of fre-
quency components, which corresponds to the time reversal. We also multiply these amplitudes
by exp(2ImΦ), which pre-compensates for the Ohmic losses. This provides the required phase
and amplitude modulation at the thick edge of the wedge.

We show an example of such calculations in Fig. 20. Panel (a) displays the trajectories of
SPPs calculated [210] by the WKB method. The trajectories for different frequencies are dis-
played by colors corresponding to their visual perception. There is a very significant spectral
dispersion: trajectories with higher frequencies are much more curved. The spatial-frequency
modulation that we have found succeeds in bringing all these rays (with different frequencies
and emitted at different x points) to the same nanofocus at the sharp edge.

The required waveforms at different x points of the thick edge of the wedge are shown in Fig.
20 (b)-(d) where the corresponding longitudinal electric fields are shown. The waves emitted at
large x, i.e., at points more distant from the nanofocus, should be emitted significantly earlier to
pre-compensate for the longer propagation times. They should also have different amplitudes
due to the differences in the adiabatic compression along the different rays. Finally, there is
clearly a negative chirp (gradual decrease of frequency with time). This is due to the fact that
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Fig. 20. (a) Trajectories (rays) of SPP packets propagating from the thick edge to the
nanofocus displayed in the xy plane of the wedge. The frequencies of the individual rays
in a packet are indicated by color as coded by the bar at the top. (b)-(d) Spatiotemporal
modulation of the excitation pulses at the thick edge of the wedge required for nanofocus-
ing. The temporal dependencies (waveforms) of the electric field for the phase-modulated
pulses for three points at the thick edge boundary: two extreme points and one at the center,
as indicated, aligned with the corresponding x points at panel (a). (e) The three excitation
pulses of panels (b)-(d) (as shown by their colors), superimposed to elucidate the phase
shifts, delays, and shape changes between these pulses. The resulting ultrashort pulse at
the nanofocus is shown by the black line. The scale of the electric fields is arbitrary but
consistent throughout the figure.

the higher frequency components propagate more slowly and therefore must be emitted earlier
to form a coherent ultrashort pulse at the nanofocus.

In Fig. 20 (e) we display together all three of the representative waveforms at the thick edge
to demonstrate their relative amplitudes and positions in time. The pulse at the extreme point
in x (shown by blue) has the longest way to propagate and therefore is the most advanced in
time. The pulse in the middle point (shown by green) is intermediate, and the pulse at the center
(x = 0, shown by red) is last. One can notice also a counterintuitive feature: the waves propa-
gating over longer trajectories are smaller in amplitude though one may expect the opposite to
compensate for the larger losses. The explanation is that the losses are actually insignificant for
the frequencies present in these waveforms, and the magnitudes are determined by adiabatic
concentration factor.

Figure 20 (e) also shows the resulting ultrashort pulse in the nanofocus. This is a transform-
limited, Gaussian pulse. The propagation along the rays completely compensates the initial
phase and amplitude modulation, exactly as intended. As a result, the corresponding electric
field of the waveform is increased by a factor of 100. Taking the other component of the electric
field and the magnetic field into account, the corresponding increase of the energy density is by
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a factor ∼ 104 with respect to that of the SPPs at the thick edge.
To briefly conclude, an approach [210] to full coherent control of spatiotemporal energy

localization on the nanoscale has been presented. From the thick edge of a plasmonic metal
nanowedge, SPPs are launched, whose phases and amplitudes are independently modulated for
each constituent frequency of the spectrum and at each spatial point of the excitation. This pre-
modulates the departing SPP wave packets in such a way that they reach the required point at
the sharp edge of the nanowedge in phase, with equal amplitudes forming a nanofocus where an
ultrashort pulse with required temporal shape is generated. This system constitutes a “nanoplas-
monic portal” connecting the incident light field, whose features are shaped on the microscale,
with the required point or features at the nanoscale.

4.6. Experimental demonstrations of coherent control on the nanoscale

The ideas of the coherent control of the nanoscale distribution of ultrafast optical fields both
space and in time, which have been introduced theoretically in Refs. [147, 195, 210, 214, 218,
236, 237], have been investigated and confirmed experimentally. Using the full phase and am-
plitude modulation of the excitation-pulse wavefront in both polarizations (the so-called po-
larization pulse shaping), the experiments have achieved both spatial control [121, 215] and
spatiotemporal control [217] on nanometer-femtosecond scale.

Recently spatiotemporal nanofocusing via the adiabatic concentration along the lines of ideas
presented above in Sec. 4.5 has been successfully demonstrated experimentally [21]. In this
work, a shaped femtosecond pulse has been coupled by a grating to a TM0 SPP mode on
the surface of an adiabatically-tapered nanocone. The spatiotemporal concentration of optical
energy in space to a ∼ 10 nm region and in time to a 15 fs duration (Fourier-transform limited,
i.e., the shortest possible at a given bandwidth). Indeed the position of the nanofocus in Ref. [21]
is always the the tip of the nanocone; so the possibility of moving the nanofocus in space is not
available.

The ideas of employing the spatial modulation of the excitation wavefront [210] described
above in Sec. 4.5 have been experimentally tested and confirmed for continuous wave (CW)
excitation [211,212]. We will present some of these experimental results below in this Section.

We start with experiments on polarization-shaping coherent control that we adapt from
Ref. [215]. The corresponding experimental approach is schematically illustrated in Fig. 21.
Polarization-shaped ultrashort laser pulses illuminate a planar nanostructure, with two-photon
photoemission electron microscopy (PEEM) [238] providing the feedback signal from the
nanoscale field distribution that is essential for adaptive near-field control.

The spatial resolution of two-photon PEEM (∼ 50 nm) is determined by its electron op-
tics and is, thus, independent of the electromagnetic light-field diffraction limit. The sensitiv-
ity of the two-photon PEEM patterns to the optical field intensities arises from the nonlin-
ear two-photon photoemission process whose intensity is proportional to the time-integrated
fourth power of the local electric-field amplitude. With these elements in place, a user-specified
nanoscopic optical field distribution is realized by processing recorded photoemission patterns
in an evolutionary algorithm that directs the iterative optimization of the irradiating laser pulse
shape.

The basic idea of the experiment is that the measured PEEM pattern identifies the origin of
ejected photoelectrons and hence the regions of high local field intensity. A controlled variation
of the PEEM pattern then proves the spatial control over the nanoscopic field distribution. We
have already discussed such an approach above – see Fig. 10 [121] and the corresponding
discussion in Sec. 3.6.

The nanostructure used consists of circular Ag disks with 180 nm diameter and 30 nm height,
fabricated by electron-beam lithography on a conductive, 40-nm-thick indium-tin oxide (ITO)
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(a)

(b) (c)

(d) (e)

Fig. 21. Schematic and experimental results of coherent control with polarization shaping.
Adapted from Ref. [215]. (a) Schematic of the experiment. A polarization shaper for ul-
trashort laser pulses controls the temporal evolution of the vectorial electric field E(t) on
a femtosecond timescale. These pulses illuminate a planar nanostructure in an ultrahigh-
vacuum chamber that is equipped with a photoemission electron microscope (PEEM). The
nanostructure consists of six circular Ag islands on an indium-tin oxide (ITO) film and a
quartz substrate. A computer-controlled charge-coupled device (CCD) camera records the
photoemission image and provides a feedback signal for an evolutionary learning algo-
rithm. Iterative optimization of the pulse-shaper settings leads to an increase in the fitness
value and correspondingly allows control over the nanooptical fields. (b), (c) The optimal
laser pulses, as experimentally characterized, display complex temporal electric-field evo-
lution for the objectives of (b) minimizing and (d) maximizing the concentration of the
excitation on the lower branch. E1 and E2 indicate the two field components that are phase-
modulated in the polarization pulse shaper in the first and second LCD layer, respectively.
They are at 45o angles with respect to the p-polarization. The overall time window shown
is 2 ps. (c) The experimental PEEM image after adaptive maximization of the upper re-
gion intensity using complex polarization-shaped laser pulses (fittest individual of the final
generation) shows predominant emission from the upper region. (e ) Photoemission after
minimization of the intensity in the upper region is concentrated in the lower region.
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film grown on a quartz substrate. The disks are arranged into three dimers that form the arms
of a star-like shape (Fig. 21 (a), lower right). The whole nanostructure is about 800 nm across,
while the gap between two of the dimer disks is ∼ 10 nm wide. After inspection by scanning-
electron microscopy (SEM), the sample is mounted in the ultrahigh-vacuum PEEM set-up. The
deposition of a small amount of caesium (∼ 0.1 monolayers) reduces the work function of the
Ag nanostructure to about 3.1 eV, that is, just below the threshold for two-photon photoemission
with 790 nm photons.

The PEEM pattern obtained after maximization of the photoemission from the upper two
arms of the Ag nanostructure in shown in Fig. 21 (c). It shows strong emission from these two
upper arms and almost no emission from the bottom arm. Analogously, the photoemission after
minimization of the upper part PEEM brightness [Fig. 21 (e)] occurs mainly in the lower area
while the contribution from the upper two arms is extremely weak. The adaptively determined
solution to each optimization problem has been proven to be robust with respect to slight im-
perfections in the experimental nanostructures. These successful optimizations demonstrate that
polarization pulse shaping allows adaptive control of the spatial distribution of photoelectrons
on a subwavelength scale, and thus of the nanoscopic optical fields that induce photoemission.

The optimally polarization-shaped laser pulses after adaptive maximization and minimiza-
tion described above are shown in Figs. 21 (b) and (d), respectively, as determined by dual-
channel spectral interferometry [239, 240]. In this representation, the shape of the quasi-three-
dimensional figure indicates the temporal evolution of the polarization state of the electric field,
with the color representing the instantaneous oscillation frequency. Contributions from both
transverse polarization components are visible in each of the two cases. Whereas the upper-
region photoemission maximization is achieved with a comparatively simple time evolution,
the corresponding minimization requires a more complex field with varying degrees of elliptic-
ity, orientation and temporal amplitudes.

Our idea [210] of the coherent control on the nanoscale by spatial modulation (shaping) of
the excitation waveform has been developed theoretically [237] and experimentally [211,212].
The coherent control of nanoscale distribution of local optical fields based on CW excitation
aimed at achieving a deterministic control of plasmonic fields by using the spatial shaping of
high order beams such as Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams has been
carried out in Ref. [211]. It has been shown experimentally that the spatial phase shaping of the
excitation field provides an additional degree of freedom to drive optical nanoantennas and
consequently control their near field response.

An example of such a deterministic coherent control is illustrated in Fig. 22. It shows a dou-
ble gap antenna formed by three 500 nm aligned gold bars forming two identical 50 nm air
gaps separated by 500 nm. For reference, in panel (a) it displays a measured two-photon lumi-
nescence (TPL) map when driving the whole antenna with a Gaussian beam linearly polarized
along the x-axis. Note that similar to what has been discussed above in Sec. 4.4, in particular,
in conjunction with Fig. 18, the TPL reflects the time-averaged distribution of the local field
intensity

〈
I2(r)
〉
. As we see from Fig. 22 (a) and as expected, a field concentration is observed

in both gaps. Figures 22 (b) and (c) show TPL maps recorded when the π-phase shift of a HG10
beam coincides, respectively, with the right and left gaps. These data demonstrate how a suit-
able positioning of the phase jump over the double antenna enables us to selectively switch on
and off one of the two hot-spot sites.

Even closer to the original idea [210] that a plasmonic wavefront can be shaped and focused
at a predetermined spot by a spatial phase modulation of the excitation waveform incident
on optically-addressable launch pads is a recent publication [212]. This article achieves con-
trolled launching and propagation of SPPs by spatially designing the amplitude and phase of
the incident light. The chosen amplitude profile, consisting of four bright (“on”) SPP launching
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Fig. 22. Experimental results on spatial coherent control of nanoantennas. Adapted from
Ref. [211]. Experimental two-photon luminescence (TPL) maps recorded for (a) a Gaussian
beam and (b, c) a Hermite-Gaussian (HG10) beam whom phase shift (indicated by the
vertical dashed line) coincides with (b) the right gap and (c) the left gap.

platforms and one central dark (“off”) arena, fully separates plasmonic effects from photonic
effects and in addition is the necessary starting point for later focusing and scanning experi-
ments. Any intensity detected inside the arena is purely plasmonic.

Adapting from Ref. [212], we present the achieved SPP focusing in Fig. 23. A phase opti-
mization loop is used to focus SPPs at a pre-chosen target. This loop yields the optimal phase
for each launching pad (“superpixel”) as well as the relative intensity to focus. The amplitude
profile is the same in all cases including the bare gold case, with four launching areas and a
central dark arena where only SPPs can propagate. The incident polarization is diagonal in re-
lation to the grating lines so as to have all available angles (2π range) contributing to the focus,
thereby maximizing the numerical aperture and resolution.

Successful focusing at the center of the SPP arena is shown in Fig. 23 (a). The structured
SPP wavefront produces an intensity in the designated target that is at least 20 times higher
than the average SPP background of an unstructured wavefront. The measured size of the plas-
monic focus is 420 nm, consistent with the diffraction limit of the SPPs. The flexibility of the
method (scanning the focus) is demonstrated in Figs. 23 (b) and (c), which shows the SPP focus
relocated without mechanical motion to controlled positions in the plasmonic arena.

The work of Ref. [212] has fully implemented the idea of Ref. [210] on the spatial-phase-
modulation control of the SPP wavefronts to position a SPP nanofocus at a desired location at
the surface. However, it employs only CW excitation and does not exploit a potential femtosec-
ond temporal degree of freedom to achieve such a nanofocusing at a predetermined moment of
time as in Ref. [210].
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Fig. 23. Experiment on coherent control (dynamic focusing) of SPPs. Adapted from Ref.
[212]. (a) Relative phases of the superpixels are optimized to focus SPPs at the center of the
SPP arena. The intensity in the target spot is purely plasmonic and 20 times higher than the
average background of an unstructured plasmonic wavefront. The focus size is diffraction
limited by the detecting optics. (b),(c), Demonstration of SPP focusing on freely chosen
targets in the SPP arena. (d) Background reference of an unstructured SPP wavefront (uni-
form phase profile).

5. Quantum nanoplasmonics: Spaser and nanoplasmonics with gain

5.1. Introduction to spasers and spasing

Not just a promise anymore [241], nanoplasmonics has delivered a number of important ap-
plications: ultrasensing [242], scanning near-field optical microscopy [190, 243], SP-enhanced
photodetectors [51], thermally assisted magnetic recording [244], generation of extreme uv
[136], biomedical tests [242, 245], SP-assisted thermal cancer treatment [246], plasmonic en-
hanced generation of extreme ultraviolet (EUV) pulses [136] and extreme ultraviolet to soft
x-ray (XUV) pulses [247], and many others – see also Ref. [23].

To continue its vigorous development, nanoplasmonics needs an active device – near-field
generator and amplifier of nanolocalized optical fields, which has until recently been absent. A
nanoscale amplifier in microelectronics is the metal-oxide-semiconductor field effect transistor
(MOSFET) [248,249], which has enabled all contemporary digital electronics, including com-
puters and communications and enabled the present day technology as we know it. However,
the MOSFET is limited by frequency and bandwidth to � 100 GHz, which is already a limit-
ing factor in further technological development. Another limitation of the MOSFET is its high
sensitivity to temperature, electric fields, and ionizing radiation, which limits its use in extreme
environmental conditions and nuclear technology and warfare.

An active element of nanoplasmonics is the spaser (Surface Plasmon Amplification by Stim-
ulated Emission of Radiation), which was proposed [29, 250] as a nanoscale quantum gener-
ator of nanolocalized coherent and intense optical fields. The idea of spaser has been further
developed theoretically [137–139, 251]. Spaser effect has recently been observed experimen-
tally [252]. Also a number of SPP spasers (also called nanolasers) have been experimentally
observed [253–256].

Spaser is a nanoplasmonic counterpart of laser: it is a quantum generator and nanoampli-
fier where photons as the generated quanta are replaced by SPs. Spaser consists of a metal
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Fig. 24. Schematic of the spaser as originally proposed in Ref. [29]. The resonator of the
spaser is a metal nanoparticle shown as a gold V-shape. It is covered by the gain medium
depicted as nanocrystal quantum dots. This active medium is supported by a neutral sub-
strate.

nanoparticle, which plays a role of the laser cavity (resonator), and the gain medium. Figure
24 schematically illustrates geometry of a spaser introduced in the original article [29], which
contains a V-shaped metal nanoparticle surrounded by a layer of semiconductor nanocrystal
quantum dots.

5.2. Spaser fundamentals

As we have already mentioned, the spaser is a nanoplasmonic counterpart of the laser [29,
251]. The laser has two principal elements: resonator (or cavity) that supports photonic mode(s)
and the gain (or active) medium that is population-inverted and supplies energy to the lasing
mode(s). An inherent limitation of the laser is that the size of the laser cavity in the propagation
direction is at least half wavelength and practically more than that even for the smallest lasers
developed [253,254,257]. In the spaser [29] this limitation is overcome. The spasing modes are
surface plasmons (SPs) whose localization length is on the nanoscale [76] and is only limited by
the minimum inhomogeneity scale of the plasmonic metal and the nonlocality radius [33] lnl ∼ 1
nm. So, the spaser is truly nanoscopic – its minimum total size can be just a few nanometers.

The resonator of a spaser can be any plasmonic metal nanoparticle whose total size R is
much less than the wavelength λ and whose metal thickness is between lnl and ls, which sup-
ports a SP mode with required frequency ωn. This metal nanoparticle should be surrounded
by the gain medium that overlaps with the spasing SP eigenmode spatially and whose emis-
sion line overlaps with this eigenmode spectrally [29]. As an example, we consider a model
of a nanoshell spaser [137, 251, 258], which is illustrated in Fig. 25. Panel (a) shows a silver
nanoshell carrying a single SP (plasmon population number Nn = 1) in the dipole eigenmode.
It is characterized by a uniform field inside the core and hot spots at the poles outside the shell
with the maximum field reaching ∼ 106 V/cm. Similarly, Fig. 25 (b) shows the quadrupole
mode in the same nanoshell. In this case, the mode electric field is non-uniform, exhibiting
hot spots of ∼ 1.5× 106 V/cm of the modal electric field at the poles. These high values of
the modal fields is the underlying physical reason for a very strong feedback in the spaser.
Under our conditions, the electromagnetic retardation within the spaser volume can be safely
neglected. Also, the radiation of such a spaser is a weak effect: the decay rate of plasmonic
eigenmodes is dominated by the internal loss in the metal. Therefore, it is sufficient to consider
only quasistatic eigenmodes [27, 76] and not their full electrodynamic counterparts [259].

For the sake of numerical illustrations of our theory, we will use the dipole eigenmode [Fig.
25 (a)]. There are two basic ways to place the gain medium: (i) outside the nanoshell, as shown
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Fig. 25. Schematic of spaser geometry, local fields, and fundamental processes leading
to spasing. Adapted from Ref. [137]. (a) Nanoshell geometry and the local optical field
distribution for one SP in an axially-symmetric dipole mode. The nanoshell has aspect ratio
η = 0.95. The local field magnitude is color-coded by the scale bar in the right-hand side
of the panel. (b) The same as (a) but for a quadrupole mode. (c) Schematic of a nanoshell
spaser where the gain medium is outside of the shell, on the background of the dipole-
mode field. (d) The same as (c) but for the gain medium inside the shell. (e) Schematic
of the spasing process. The gain medium is excited and population-inverted by an external
source, as depicted by the black arrow, which produces electron-hole pairs in it. These pairs
relax, as shown by the green arrow, to form the excitons. The excitons undergo decay to the
ground state emitting SPs into the nanoshell. The plasmonic oscillations of the nanoshell
stimulates this emission, supplying the feedback for the spaser action.
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in panel (c), and (ii) in the core, as in panel (d), which was originally proposed in Ref. [258]. As
we have verified, these two designs lead to comparable characteristics of the spaser. However,
the placement of the gain medium inside the core illustrated in Fig. 25 (d) has a significant
advantage because the hot spots of the local field are not covered by the gain medium and are
sterically available for applications.

Note that any l-multipole mode of a spherical particle is, indeed, 2l + 1-times degenerate.
This may make the spasing mode to be polarization unstable, like in lasers without polariz-
ing elements. In reality, the polarization may be clamped and become stable due to deviations
from the perfect spherical symmetry, which exist naturally or can be introduced deliberately.
More practical shape for a spaser may be a nanorod, which has a mode with the stable polariza-
tion along the major axis. However, a nanorod is a more complicated geometry for theoretical
treatment, and we will consider it elsewhere.

The level diagram of the spaser gain medium and the plasmonic metal nanoparticle is dis-
played in Fig. 25 (e) along with a schematic of the relevant energy transitions in the system.
The gain medium chromophores may be semiconductor nanocrystal quantum dots [29, 260],
dye molecules [261, 262], rare-earth ions [258], or electron-hole excitations of an unstructured
semiconductor [253,257]. For certainty, we will use a semiconductor-science language of elec-
trons and holes in quantum dots.

The pump excites electron-hole pairs in the chromophores [Fig. 25 (e)], as indicated by the
vertical black arrow, which relax to form excitons. The excitons constitute the two-level systems
that are the donors of energy for the SP emission into the spasing mode. In vacuum, the excitons
would recombine emitting photons. However, in the spaser geometry, the photoemission is
strongly quenched due to the resonance energy transfer to the SP modes, as indicated by the
red arrows in the panel. The probability of the radiativeless energy transfer to the SPs relative
to that of the radiative decay (photon emission) is given by the so-called Purcell factor

∼ λ 3Q
R3 � 1 , (60)

where R is a characteristic size of the spaser metal core. Thus this radiativeless energy transfer
to the spaser mode is the dominant process whose probability is by orders of magnitude greater
than that of the free-space (far-field) emission.

The plasmons already in the spaser mode create the high local fields that excite the gain
medium and stimulate more emission to this mode, which is the feedback mechanism. If this
feedback is strong enough, and the life time of the spaser SP mode is long enough, then an
instability develops leading to the avalanche of the SP emission in the spasing mode and spon-
taneous symmetry breaking, establishing the phase coherence of the spasing state. Thus the
establishment of spasing is a non-equilibrium phase transition, as in the physics of lasers.

5.3. Brief overview of latest progress in spasers

After the original theoretical proposal and prediction of the spaser [29], there has been an active
development in this field, both theoretical and experimental. There has also been a US patent
issued on spaser [250].

Among theoretical developments, a nanolens spaser has been proposed [263], which pos-
sesses a nanofocus (“the hottest spot”) of the local fields. In Refs. [29, 263], the necessary
condition of spasing has been established on the basis of the perturbation theory.

There have been theories published describing the SPP spasers (or, “nanolasers” as some-
times they are called) phenomenologically, on the basis of classic linear electrodynamics by
considering the gain medium as a dielectric with a negative imaginary part of the permittiv-
ity, e.g., [258]. Very close fundamentally and technically are works on the loss compensation
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in metamaterials [264–267]. Such linear-response approaches do not take into account the na-
ture of the spasing as a non-equilibrium phase transition, at the foundation of which is spon-
taneous symmetry breaking: establishing coherence with an arbitrary but sustained phase of
the SP quanta in the system [137]. Spaser is necessarily a deeply-nonlinear (nonperturbative)
phenomenon where the coherent SP field always saturates the gain medium, which eventually
brings about establishment of the stationary (or, continuous wave, CW) regime of the spas-
ing [137]. This leads to principal differences of the linear-response results from the microscopic
quantum-mechanical theory in the region of spasing, as we discuss below in conjunction with
Fig. 27.

There has also been a theoretical publication on a bowtie spaser (nanolaser) with electrical
pumping [268]. It is based on balance equations and only the CW spasing generation intensity
is described. Yet another theoretical development has been a proposal of the lasing spaser [269],
which is made of a plane array of spasers.

There have also been a theoretical proposal of a spaser (“nanolaser”) consisting of a metal
nanoparticle coupled to a single chromophore [270]. In this paper, a dipole-dipole interaction
is illegitimately used at very small distances r where it has a singularity (diverging for r → 0),
leading to a dramatically overestimated coupling with the SP mode. As a result, a completely
unphysical prediction of CW spasing due to single chromophore has been obtained [270]. In
contrast, our theory [137] is based on the full (exact) field of the spasing SP mode without the
dipole (or, any multipole) approximation. As our results of Sec. 5.5 below show, hundreds of
chromophores per metal nanoparticle are realistically requited for the spasing even under the
most favorable conditions.

There has been a vigorous experimental investigation of the spaser and the concepts of
spaser. Stimulated emission of SPPs has been observed in a proof-of-principle experiment us-
ing pumped dye molecules as an active (gain) medium [261]. There have also been later experi-
ments that demonstrated strong stimulated emission compensating a significant part of the SPP
loss [262, 271–274]. As a step toward the lasing spaser, the first experimental demonstration
has been reported of a partial compensation of the Joule losses in a metallic photonic meta-
material using optically pumped PbS semiconductor quantum dots [260]. There have also been
experimental investigations reporting the stimulated emission effects of SPs in plasmonic metal
nanoparticles surrounded by gain media with dye molecules [275, 276]. The full loss compen-
sation and amplification of the long-range SPPs at λ = 882 nm in a gold nanostrip waveguide
with a dyes solution as a gain medium has been observed [277].

At the present time, there have been a number of the successful experimental observations of
the spaser and SPP spasers (the so-called nanolasers). An electrically-pumped nanolaser with
semiconductor gain medium has been demonstrated [253] where the lasing modes are SPPs
with a one-dimensional confinement to a ∼ 50 nm size. A nanolaser with an optically-pumped
semiconductor gain medium and a hybrid semiconductor/metal (CdS/Ag) SPP waveguide has
been demonstrated with an extremely tight transverse (two-dimensional) mode confinement to
∼ 10 nm size [254]. This has been followed by the development of CdS/Ag nanolasers generat-
ing a visible single mode at a room temperature with a tight one-dimensional confinement (∼ 20
nm) and a two-dimensional confinement in the plane of the structure to an area ∼ 1 μm2 [255].
A highly efficient SPP spaser in the communication range (λ = 1.46 μm) with an optical pump-
ing based on a gold film and an InGaAs semiconductor quantum-well gain medium has recently
been reported [256].

Finally, an observation has been published of a nanoparticle spaser [252]. This spaser is a
chemically synthesized gold nanosphere of radius 7 nm surrounded by a dielectric shell of a 21
nm outer radius containing immobilized dye molecules. Under nanosecond optical pumping in
the absorption band of the dye, this spaser develops a relatively narrow-spectrum and intense
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visible emission that exhibits a pronounced threshold in pumping intensity. The observed char-
acteristics of this spaser are in an excellent qualitative agreement and can be fully understood
on the basis of the corresponding theoretical results described below in Sec. 5.5.

5.4. Equations of spaser

5.4.1. Quantum density matrix equations (optical Bloch equations) for spaser

The SP eigenmodes ϕn(r) are described by a wave equation (25) [29, 76]. The electric field
operator of the quantized SPs is an operator [29]

Ê(r) =−∑
n

An∇ϕn(r)(ân + â†
n) , An =

(
4π h̄sn

εds′n

)1/2

, (61)

where â†
n and ân are the SP creation and annihilation operators, −∇ϕn(r) = En(r) is the modal

field of an nth mode, and s′n = Re [ds(ωn)/dωn]. Note that we have corrected a misprint in
Ref. [29] by replacing the coefficient 2π by 4π .

The spaser Hamiltonian has the form

Ĥ = Ĥg + h̄∑
n

ωnâ†
nân −∑

p
Ê(rp)d̂(p) , (62)

where Ĥg is the Hamiltonian of the gain medium, p is a number (label) of a gain medium
chromophore, rp is its coordinate vector, and d̂(p) is its dipole moment operator. In this theory,
we treat the gain medium quantum mechanically but the SPs quasiclassically, considering ân

as a classical quantity (c-number) an with time dependence as an = a0n exp(−iωt), where a0n

is a slowly-varying amplitude. The number of coherent SPs per spasing mode is then given
by Np = |a0n|2. This approximation neglects the quantum fluctuations of the SP amplitudes.
However, when necessary, we will take into account these quantum fluctuations, in particular,
to describe the spectrum of the spaser.

Introducing ρ(p) as the density matrix of a pth chromophore, we can find its equation of
motion in a conventional way by commutating it with the Hamiltonian (62) as

ih̄ρ̇(p) = [ρ(p), Ĥ] , (63)

where the dot denotes temporal derivative. We use the standard rotating wave approximation
(RWA), which only takes into account the resonant interaction between the optical field and
chromophores. We denote |1〉 and |2〉 as the ground and excited states of a chromophore, with
the transition |2〉� |1〉 resonant to the spasing plasmon mode n. In this approximation, the time

dependence of the nondiagonal elements of the density matrix is
(

ρ(p)
)

12
= ρ̄(p)

12 exp(iωt), and(
ρ(p)
)

21
= ρ̄(p)∗

12 exp(−iωt), where ρ̄(p)
12 is an amplitude slowly varying in time, which defines

the coherence (polarization) for the |2〉 � |1〉 spasing transition in a pth chromophore of the
gain medium.

Introducing a rate constant Γ12 to describe the polarization relaxation and a difference n(p)
21 =

ρ(p)
22 − ρ(p)

11 as the population inversion for this spasing transition, we derive an equation of
motion for the non-diagonal element of the density matrix as

˙̄ρ(p)
12 =− [i(ω −ω12)+Γ12] ρ̄

(p)
12 + ia0nn(p)

21 Ω̃(p)∗
12 , (64)

where
Ω̃(p)

12 =−And(p)
12 ∇ϕn(rp)/h̄ (65)
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is the one-plasmon Rabi frequency for the spasing transition in a pth chromophore, and d(p)
12

is the corresponding transitional dipole element. Note that always d(p)
12 is either real or can be

made real by a proper choice of the quantum state phases, making the Rabi frequency Ω̃(p)
12 also

a real quantity.
An equation of motion for np

21 can be found in a standard way by commutating it with Ĥ.
To provide conditions for the population inversion (np

21 > 0), we imply existence of a third
level. For simplicity, we assume that it very rapidly decays into the excited state |2〉 of the
chromophore, so its own populations is negligible. It is pumped by an external source from the
ground state (optically or electrically) with some rate that we will denote g. In this way, we
obtain the following equation of motion:

˙̄n(p)
21 =−4Im

[
a0nρ̄(p)

12 Ω̃(p)
21

]
− γ2

(
1+n(p)

21

)
+g
(

1−n(p)
21

)
, (66)

where γ2 is the decay rate |2〉 → |1〉.
The stimulated emission of the SPs is described as their excitation by the coherent polariza-

tion of the gain medium. The corresponding equation of motion can be obtained using Hamil-
tonian (62) and adding the SP relaxation with a rate of γn as

ȧ0n = [i(ω −ωn)− γn]a0n + ia0n ∑
p

ρ(p)∗
12 Ω̃(p)

12 . (67)

As an important general remark, the system of Eqs. (64), (66), and (67) is highly nonlinear:
each of these equations contains a quadratic nonlinearity: a product of the plasmon-field ampli-
tude a0n by the density matrix element ρ12 or population inversion n21. Altogether, this is a six-
order nonlinearity. This nonlinearity is a fundamental property of the spaser equations, which
makes the spaser generation always an essentially nonlinear process that involves a noneqilib-
rium phase transition and a spontaneous symmetry breaking: establishment of an arbitrary but
sustained phase of the coherent SP oscillations.

A relevant process is spontaneous emission of SPs by a chromophore into a spasing SP mode.

The corresponding rate γ(p)
2 for a chromophore at a point rp can be found in a standard way

using the quantized field (61) as

γ(p)
2 = 2

A2
n

h̄γn

∣∣d12∇ϕn(rp)
∣∣2 (Γ12 + γn)

2

(ω12 −ωn)
2 +(Γ12 + γn)

2 . (68)

As in Schawlow-Towns theory of laser-line width [278], this spontaneous emission of SPs leads
to the diffusion of the phase of the spasing state. This defines width γs of the spasing line as

γs =
∑p

(
1+n(p)

21

)
γ(p)

2

2(2Np +1)
. (69)

This width is small for a case of developed spasing when Np � 1. However, for Np ∼ 1, the
predicted width may be too high because the spectral diffusion theory assumes that γs � γn. To
take into account this limitation in a simplified way, we will interpolate to find the resulting

spectral width Γs of the spasing line as Γs =
(
γ−2

n + γ−2
s

)−1/2
.

We will also examine the spaser as a bistable (logical) amplifier. One of the ways to set the
spaser in such a mode is to add a saturable absorber. This is described by the same Eqs. (64)-
(67) where the chromophores belonging to the absorber are not pumped by the external source
directly, i.e., for them in Eq. (66) one has to set g = 0.
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Numerical examples are given for a silver nanoshell where the core and the external dielec-
tric have the same permittivity of εd = 2; the permittivity of silver is adopted from Ref. [30].
The following realistic parameters of the gain medium are used (unless indicated otherwise):
d12 = 1.5×10−17 esu, h̄Γ12 = 10 meV, γ2 = 4×1012 s−1 (this value takes into account the spon-
taneous decay into SPs), and density of the gain medium chromophores is nc = 2.4×1020 cm−3,
which is realistic for dye molecules but may be somewhat high for semiconductor quantum dots
that were proposed as the chromophores [29] and used in experiments [260]. We will assume
a dipole SP mode and chromophores situated in the core of the nanoshell as shown in Fig.
25 (d). This configuration are of advantage both functionally (because the region of the high
local fields outside the shell is accessible for various applications) and computationally (the
uniformity of the modal fields makes the summation of the chromophores trivial, thus greatly
facilitating numerical procedures).

5.4.2. Equations for CW regime

Physically, the spaser action is a result of spontaneous symmetry breaking when the phase of
the coherent SP field is established from the spontaneous noise. Mathematically, the spaser is
described by homogeneous differential Eqs. (64)-(67). These equations become homogeneous
algebraic equations for the CW case. They always have a trivial, zero solution. However, they
may also possess a nontrivial solution describing spasing. An existence condition of such a
nontrivial solution is

(ωs −ωn + iγn)
−1 × (70)

(ωs −ω21 + iΓ12)
−1 ∑

p

∣∣∣Ω̃(p)
12

∣∣∣2 n(p)
21 =−1 .

The population inversion of a pth chromophore n(p)
21 is explicitly expressed as

n(p)
21 = (g− γ2)× (71){
g+ γ2 +4Nn

∣∣∣Ω̃(p)
12

∣∣∣2/[(ωs −ω21)
2 +Γ2

12

]}−1

.

From the imaginary part of Eq. (71) we immediately find the spasing frequency ωs,

ωs = (γnω21 +Γ12ωn)
/
(γn +Γ12) , (72)

which generally does not coincide with either the gain transition frequency ω21 or the SP fre-
quency ωn, but is between them (this is a frequency walk-off phenomenon similar to that of
laser physics). Substituting Eq. (72) back into Eqs. (71)-(72), we obtain a system of equations

(γn +Γ12)
2

γnΓ12

[
(ω21 −ωn)

2 +(Γ12 + γn)
2
] ×

∑
p

∣∣∣Ω̃(p)
12

∣∣∣2 n(p)
21 = 1 , (73)

n(p)
21 = (g− γ2)×⎡
⎢⎣g+ γ2 +

4Nn

∣∣∣Ω̃(p)
12

∣∣∣2 (Γ12 + γn)

(ω12 −ωn)
2 +(Γ12 + γn)

2

⎤
⎥⎦
−1

. (74)
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This system defines the stationary (CW-generation) number of SPs per spasing mode, Nn.

Since n(p)
21 ≤ 1, from Eqs. (73), (74) we immediately obtain a necessary condition of the

existence of spasing,

(γn +Γ12)
2

γnΓ12

[
(ω21 −ωn)

2 +(Γ12 + γn)
2
]∑

p

∣∣∣Ω̃(p)
12

∣∣∣2 ≥ 1 . (75)

This expression is fully consistent with Ref. [29]. The following order of magnitude estimate
of this spasing condition has a transparent physical meaning and is of heuristic value,

d2
12QNc

h̄Γ12Vn
� 1 , (76)

where Q = ω/γn is the quality factor of SPs, Vn is the volume of the spasing SP mode, and Nc

is the of number of the gain medium chromophores within this volume. Deriving this estimate,
we have neglected the detuning, i.e., set ω21 −ωn = 0. We also used the definitions of An of

Eq. (61) and Ω̃(p)
12 given by Eq. (65), and the estimate |∇ϕn(r)|2 ∼ 1/V following from the

normalization of the SP eigenmodes
∫ |∇ϕn(r)|2 d3r = 1 of Ref. [76]. The result of Eq. (76) is,

indeed, in agreement with Ref. [29] where it was obtained in different notations.
It follows from Eq. (76) that for the existence of spasing it is beneficial to have a high quality

factor Q, a high density of the chromophores, and a large transition dipole (oscillator strength)
of the chromophore transition. The small modal volume Vn (at a given number of the chro-
mophores Nc) is beneficial for this spasing condition: physically, it implies strong feedback in
the spaser. Note that for the given density of the chromophores nc = Nc/Vn, this spasing con-
dition does not explicitly depend on the spaser size, which opens up a possibility of spasers of
a very small size limited from the bottom by only the nonlocality radius lnl ∼ 1 nm. Another
important property of Eq. (76) is that it implies the quantum-mechanical nature of spasing and
spaser amplification: this condition essentially contains the Planck constant h̄ and, thus, does
not have a classical counterpart. Note that in contrast to lasers, the spaser theory and Eqs. (75),
(76) in particular do not contain speed of light, i.e., they are quasistatic.

Now we will examine the spasing condition and reduce it to a requirement for the gain
medium. First, we substitute all the definitions and assume the perfect resonance between the
generating SP mode and the gain medium, i.e., ωn = ω21. As a result, we obtain from Eq. (75),

4π
3

sn |d12|2
h̄γnΓ12εds′n

∫
V
[1−Θ(r)] |En(r)|2 d3r ≥ 1 , (77)

where the integral is extended over the volume V of the system, and the Θ-function takes into
account a simplifying realistic assumption that the gain medium occupies the entire space free

from the core’s metal. We also assume that the orientations of the transition dipoles d(p)
12 are

random and average over them, which results in the factor of 3 in the denominator in Eq. (77).
From Eqs. (27) and (34), it follows that∫

V
[1−Θ(r)] |En(r)|2 d3r = 1− sn . (78)

Next, we give approximate expressions for the spectral parameter (4) , which are very accurate
for the realistic case of Q � 1,

Ims(ω) =
s2

n

εd
Imεm(ω) =

1
Q

sn (1− sn) , (79)
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Fig. 26. Threshold gain for spasing gth for silver and gold, as indicated in the graphs, as a
function of the spasing frequency ω . The red line separates the area gth < 3× 103 cm−1,
which can relatively easily be achieved with direct band-gap semiconductors (DBGSs). The
real part of the gain medium permittivity is denoted in the corresponding panels as εd .

where definition (6) is used. Taking into account Eqs. (47), (48) and (78), (79), we obtain from
Eq. (77) a necessary condition of spasing at a frequency ω as

4π
3

|d12|2 nc [1−Res(ω)]

h̄Γ12Res(ω)Imεm(ω)
≥ 1 , (80)

For the sake of comparison, consider a continuous gain medium comprised of the same
chromophores as the gain shell of the spaser. Its gain g (whose dimensionality is cm−1) is given
by a standard expression

g =
4π
3

ω
c

√
εd |d12|2 nc

h̄Γ12
. (81)

Substituting it into Eq. (80), we obtain the spasing criterion in terms of the gain as

g ≥ gth , gth =
ω

c
√

εd

Res(ω)

1−Res(ω)
Imεm(ω) , (82)

where gth has a meaning of the threshold gain needed for spasing. Importantly, this gain depends
only on the dielectric properties of the system and spasing frequency but not on the geometry of
the system or the distribution of the local fields of the spasing mode (hot spots, etc.) explicitly.
However note that the system’s geometry (along with the permittivities) does define the spasing
frequencies.

In Figs. 26 (a) and (b), correspondingly, we illustrate the analytical expression (82) for gold
and silver embedded in a dielectric with εd = 2 (simulating a light glass) and εd = 10 (sim-
ulating a semiconductor), correspondingly. These are computed from Eq. (82) assuming that
the metal core is embedded into the gain medium with the real part of the dielectric function
equal to εd . As we see from Fig. 26, the spasing is possible for silver in the near-ir commu-
nication range and the adjacent red portion of the visible spectrum for a gain g < 3000 cm−1

(regions below the red line in Fig. 26) , which is realistically achievable with direct band-gap
semiconductors (DBDSs).

5.5. Spaser in CW mode

The “spasing curve” (a counterpart of the light-light curve, or L-L curve, for lasers), which is the
dependence of the coherent SP population Nn on the excitation rate g, obtained by solving Eqs.
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(73), (74), is shown in Fig. 27 (a) for four types of the silver nanoshells with the frequencies
of the spasing dipole modes as indicated, which are in the range from near-ir (h̄ωs = 1.2 eV)
to mid-visible (h̄ωs = 2.2 eV). In all cases, there is a pronounced threshold of the spasing at
an excitation rate gth ∼ 1012 s−1. Soon after the threshold, the dependence Nn(g) becomes
linear, which means that every quantum of excitation added to the active medium with a high
probability is stimulated to be emitted as a SP, adding to the coherent SP population.

While this is similar to conventional lasers, there is a dramatic difference for the spaser. In
lasers, a similar relative rate of the stimulated emission is achieved at a photon population of
∼ 1018 − 1020, while in the spaser the SP population is Nn � 100. This is due to the much
stronger feedback in spasers because of the much smaller modal volume Vn – see discussion of
Eq. (76). The shape of the spasing curves of Fig. 27 (a) (the well-pronounced threshold with the
linear dependence almost immediately above the threshold) is in a qualitative agreement with
the experiment [252].

The population inversion number n21 as a function of the excitation rate g is displayed in
Fig. 27 (b) for the same set of frequencies (and with the same color coding) as in panel (a).
Before the spasing threshold, n21 increases with g to become positive with the onset of the
population inversion just before the spasing threshold. For higher g, after the spasing threshold
is exceeded, the inversion n21 becomes constant (the inversion clamping). The clamped levels
of the inversion are very low, n21 ∼ 0.01, which again is due to the very strong feedback in the
spaser.

The spectral width Γs of the spaser generation is due to the phase diffusion of the quantum
SP state caused by the noise of the spontaneous emission of the SPs into the spasing mode, as
described by Eq. (69). This width is displayed in Fig. 27 (c) as a function of the pumping rate
g. At the threshold, Γs is that of the SP line γn but for stronger pumping, as the SPs accumulate
in the spasing mode, it decreases ∝ N−1

n , as given by Eq. (69). This decrease of Γs reflects the
higher coherence of the spasing state with the increased number of SP quanta and, correspond-
ingly, lower quantum fluctuations. As we have already mentioned, this is similar to the lasers
as described by the Schawlow-Townes theory [278].

The developed spasing in a dipole SP mode will show itself in the far field as an anomalously
narrow and intense radiation line. The shape and intensity of this line in relation to the lines of
the spontaneous fluorescence of the isolated gain medium and its SP-enhanced fluorescence line
in the spaser is illustrated in Figs. 27 (d)-(f). Note that for the system under consideration, there
is a 20 meV red shift of the gain medium fluorescence with respect to the SP line center. It is
chosen so to illustrate the spectral walk-off of the spaser line. For one percent in the excitation
rate above the threshold of the spasing [panel (d)], a broad spasing line (red color) appears
comparable in intensity to the SP-enhanced spontaneous fluorescence line (blue color). The
width of this spasing line is approximately the same as of the fluorescence, but its position is
shifted appreciably (spectral walk-off) toward the isolated gain medium line (green color). For
the pumping twice more intense [panel (e)], the spaser-line radiation dominates, but its width
is still close to that of the SP line due to significant quantum fluctuations of the spasing state
phase. Only when the pumping rate is an order of magnitude above the threshold, the spaser
line strongly narrows [panel (f)], and it also completely dominates the spectrum of the radiation.
This is a regime of small quantum fluctuations, which is desired in applications.

These results in the spasing region are different in the most dramatic way from previous phe-
nomenological models, which are based on linear electrodynamics where the gain medium that
has negative imaginary part of its permittivity plus lossy metal nanosystem, described purely
electrodynamically [258, 265]. For instance, in a “toy model” [265], the width of the reso-
nance line tends to zero at the threshold of spasing and then broadens up again. This distinction
of the present theory is due the nature of the spasing as a spontaneous symmetry breaking
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Fig. 27. Spaser SP population and spectral characteristics in the stationary state. The com-
putations are done for a silver nanoshell with the external radius R2 = 12 nm; the detuning
of the gain medium from the spasing SP mode is h̄(ω21 −ωn) = −0.02 eV. The other
parameters are indicated in Sec. 5.4. (a) Number Nn of plasmons per spasing mode as a
function of the excitation rate g (per one chromophore of the gain medium). Computations
are done for the dipole eigenmode with the spasing frequencies ωs as indicated, which
were chosen by the corresponding adjustment of the nanoshell aspect ratio. (b) Population
inversion n12 as a function of the pumping rate g. The color coding of the lines is the same
as in panel (a). (c) The spectral width Γs of the spasing line (expressed as h̄Γs in meV) as
a function of the pumping rate g. The color coding of the lines is the same as in panel (a).
(d)-(f) Spectra of the spaser for the pumping rates g expressed in the units of the threshold
rate gth, as indicated in the panels. The curves are color coded and scaled as indicated.
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(nonequilibrium phase transition with a randomly established but sustained phase) leading to
the establishment of a coherent SP state. This non-equilibrium phase transition to spasing and
the spasing itself are contained in the present theory due to the fact that the fundamental equa-
tions of the spasing (64), (66), and (67) are nonlinear, as we have already discussed above in
conjunction with these equations – see the text after Eq. (67). The previous publications on gain
compensation by loss [258, 265, 267] based on linear electrodynamic equations do not contain
spasing. Therefore, they are not applicable in the region of the complete loss compensation and
spasing, though their results are presented for that region.

5.6. Spaser as ultrafast quantum nanoamplifier

5.6.1. Problem of setting spaser as an amplifier

As we have already mentioned in Sec. 5.1, a fundamental and formidable problem is that, in
contrast to the conventional lasers and amplifiers in quantum electronics, the spaser has an
inherent feedback that typically cannot be removed. Such a spaser will develop generation and
accumulation of the macroscopic number of coherent SPs in the spasing mode. This leads to
the the population inversion clamping in the CW regime at a very low level – cf. Fig. 27 (b).
This CW regime corresponds to the net amplification equal zero, which means that the gain
exactly compensates the loss, which condition is expressed by Eq. (73). This is a consequence
of the nonlinear gain saturation. This holds for any stable CW generator (including any spaser
or laser) and precludes using them as amplifiers.

There are several ways to set a spaser as a quantum amplifier. One of them is to reduce
the feedback, i.e., to allow some or most of the SP energy in the spaser to escape from the
active region, so the spaser will not generate in the region of amplification. Such a root has
successfully been employed to build a SPP plasmonic amplifier on the long-range plasmon
polaritons [277]. A similar root for the SP spasers would be to allow some optical energy to
escape either by a near-field coupling or by a radiative coupling to far-field radiation. The near-
field coupling approach is promising for building integrated active circuits out of the spasers.

Following Ref. [137], we consider here two distinct approaches for setting the spasers as
quantum nanoamplifiers. The first is a transient regime based on the fact that the establishment
of the CW regime and the consequent inversion clamping and the total gain vanishing require
some time that is determined mainly by the rate of the quantum feedback and depends also on
the relaxation rates of the SPs and the gain medium. After the population inversion is created
by the onset of pumping and before the spasing spontaneously develops, as we show below in
this Section, there is a time interval of approximately 250 fs, during which the spaser provides
usable (and as predicted, quite high) amplification – see Sec. 5.6.2 below.

The second approach to set the spaser as a logical quantum nanoamplifier is a bistable regime
that is achieved by introducing a saturable absorber into the active region, which prevents the
spontaneous spasing. Then injection of a certain above-threshold amount of SP quanta will sat-
urate the absorber and initiate the spasing. Such a bistable quantum amplifier will be considered
in Sec. 5.6.3.

The temporal behavior of the spaser has been found by direct numerical solution of Eqs.
(64)-(67). This solution is facilitated by the fact that in the model under consideration all the
chromophores experience the same local field inside the nanoshell, and there are only two types
of such chromophores: belonging to the gain medium and the saturable absorber, if it is present.

5.6.2. Monostable spaser as a nanoamplifier in transient regime

Here we consider a monostable spaser in a transient regime. This implies that no saturable
absorber is present. We will consider two pumping regimes: stationary and pulse.
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Fig. 28. Ultrafast dynamics of spaser. (a) For monostable spaser (without a saturable ab-
sorber), dependence of SP population in the spasing mode Nn on time t. The spaser is
stationary pumped at a rate of g = 5×1012 s−1. The color-coded curves correspond to the
initial conditions with the different initial SP populations, as shown in the graphs. (b) The
same as (a) but for the temporal behavior of the population inversion n21. (c) Dynamics of
a monostable spaser (no saturable absorber) with the pulse pumping described as the initial
inversion n21 = 0.65. Coherent SP population Nn is displayed as a function of time t. Dif-
ferent initial populations are indicated by color-coded curves. (d) The same as (c) but for
the corresponding population inversion n21. (e) The same as (a) but for bistable spaser with
the saturable absorber in concentration na = 0.66nc. (f) The same as (b) but for the bistable
spaser. (g) The same as (e) but for the pulse pumping with the initial inversion n21 = 0.65.
(h) The same as (g) but for the corresponding population inversion n21.
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Starting with the stationary regime, we assume that the pumping at a rate (per one chro-
mophore) of g = 5× 1012 s−1 starts at a moment of time t = 0 and stays constant after that.
Immediately at t = 0, a certain number of SPs are injected into the spaser. We are interested in
its temporal dynamics from this moment on.

The dynamical behavior of the spaser under this pumping regime is illustrated in Figs. 28 (a),
(b). As we see, the spaser, which starts from an arbitrary initial population Nn, rather rapidly,
within a few hundred femtoseconds approaches the same stationary (“logical”) level. At this
level, an SP population of Nn = 67 is established, while the inversion is clamped at a low level of
n21 = 0.02. On the way to this stationary state, the spaser experiences relaxation oscillations in
both the SP numbers and inversion, which have a trend to oscillate out of phase [compare panels
(a) and (b)]. This temporal dynamics of the spaser is quite complicated and highly nonlinear
(unharmonic). It is controlled not by a single relaxation time but by a set of the relaxation rates.
Clearly, among these are the energy transfer rate from the gain medium to the SPs and the
relaxation rates of the SPs and the chromophores.

In this mode, the main effect of the initial injection of the SPs (described theoretically as
different initial values of Nn) is in the interval of time it is required for the spaser to reach the
final (CW) state. For very small Nn, which in practice can be supplied by the noise of the spon-
taneous SP emission into the mode, this time is approximately 250 fs (cf.: the corresponding
SP relaxation time is less then 50 fs). In contrast, for the initial values of Nn = 1−5, this time
shortens to 150 fs.

Now consider the second regime: pulse pumping. The gain-medium population of the spaser
is inverted at t = 0 to saturation with a short (much shorter than 100 fs) pump pulse. Simul-
taneously, at t = 0, some number of plasmons are injected (say, by an external nanoplasmonic
circuitry). In response, the spaser should produce an amplified pulse of the SP excitation. Such
a function of the spaser is illustrated in Figs. 28 (c) and (d).

As we see from panel (c), independently from the initial number of SPs, the spaser always
generates a series of SP pulses, of which only the first pulse is large (at or above the logical level
of Nn ∼ 100). (An exception is a case of little practical importance when the initial Nn = 120
exceeds this logical level, when two large pulses are produced.) The underlying mechanism
of such a response is the rapid depletion of the inversion seen in panel (d), where energy is
dissipated in the metal of the spaser. The characteristic duration of the SP pulse ∼ 100 fs is
defined by this depletion, controlled by the energy transfer and SP relaxation rates. This time
is much shorter than the spontaneous decay time of the gain medium. This acceleration is due
to the stimulated emission of the SPs into the spasing mode (which can be called a “stimulated
Purcell effect”). There is also a pronounced trend: the lower is initial SP population Nn, the later
the spaser produces the amplified pulse. In a sense, this spaser functions as a pulse-amplitude
to time-delay converter.

5.6.3. Bistable spaser with saturable absorber as an ultrafast nanoamplifier

Now let us consider a bistable spaser as a quantum threshold (or, logical) nanoamplifier. Such a
spaser contains a saturable absorber mixed with the gain medium with parameters indicated at
the end of Sec. 5.4.1 and the concentration of the saturable absorber na = 0.66nc. This case of
a bistable spaser amplifier is of a particular interest because in this regime the spaser comes as
close as possible in its functioning to the semiconductor-based (mostly, MOSFET-based) digital
nanoamplifiers. As in the previous Subsection, we will consider two cases: the stationary and
short-pulse pumping.

We again start with the case of the stationary pumping at a rate of g = 5×1012 s−1. We show
in Figs. 28 (e), (f) the dynamics of such a spaser. For a small initial population Nn = 5×10−3

simulating the spontaneous noise, the spaser is rapidly (faster than in 50 fs) relaxing to the
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zero population [panel (e)], while its gain-medium population is equally rapidly approaching
a high level [panel (f)] n21 = 0.65 that is defined by the competition of the pumping and the
enhanced decay into the SP mode (the purple curves). This level is so high because the spasing
SP mode population vanishes and the stimulated emission is absent. After reaching this stable
state (which one can call, say, “logical zero”), the spaser stays in it indefinitely long despite the
continuing pumping.

In contrast, for initial values Nn of the SP population large enough [for instance, for Nn = 5,
as shown by the blue curves in Figs. 28 (e) and (f)], the spaser tends to the “logical one”
state where the stationary SP population reaches the value of Nn ≈ 60. Due to the relaxation
oscillations, it actually exceeds this level within a short time of � 100 fs after the seeding with
the initial SPs. As the SP population Nn reaches its stationary (CW) level, the gain medium
inversion n21 is clamped down at a low level of a few percent, as typical for the CW regime
of the spaser. This “logical one” state salso persists indefinitely, as long as the inversion is
supported by the pumping.

There is a critical curve (separatrix) that divide the two stable dynamics types (leading to the
logical levels of zero and one). For the present set of parameters this separatrix starts with the
initial population of Nn ≈ 1. For a value of the initial Nn slightly below 1, the SP population
Nn experiences a slow (hundreds fs in time) relaxation oscillation but eventually relaxes to
zero [Fig. 28 (e), black curve], while the corresponding chromophore population inversion n21

relaxes to the high value n21 = 0.65 [panel (f), black curve]. In contrast, for a value of Nn

slightly higher than 1 [light blue curves in panels (e) and (f)], the dynamics is initially close
to the separaratrix but eventually the initial slow dynamics tends to the high SP population
and low chromophore inversion through a series of the relaxation oscillations. The dynamics
close to the separatrix is characterized by a wide range of oscillation times due to its highly
nonlinear character. The initial dynamics is slowest (the “decision stage” of the bistable spaser
that lasts � 1 ps). The “decision time” is diverging infinitesimally close to the separatrix, as is
characteristic of any threshold (logical) amplifier.

The gain (amplification coefficient) of the spaser as a logical amplifier is the ratio of the high
CW level to the threshold level of the SP population Nn. For this specific spaser with the chosen
set of parameters, this gain is ≈ 60, which is more than sufficient for the digital information
processing. Thus this spaser can make a high-gain, ∼ 10 THz-bandwidth logical amplifier or
dynamical memory cell with excellent prospects of applications.

The last but not the least regime to consider is that of the pulse pumping in the bistable
spaser. In this case, the population inversion (n21 = 0.65) is created by a short pulse at t = 0 and
simultaneously initial SP population Nn is created. Both are simulated as the initial conditions
in Eqs. (64)-(67). The corresponding results are displayed in Figs. 28 (g) and (h).

When the initial SP population exceeds the critical one of Nn = 1 (the blue, green, and red
curves), the spaser responds with generating a short (duration less than 100 fs) pulse of the SP
population (and the corresponding local fields) within a time � 100 fs [panel (g)]. Simultane-
ously, the inversion is rapidly (within ∼ 100 fs) exhausted [panel (h)].

In contrast, when the initial SP population Nn is less than the critical one (i.e., Nn < 1 in this
specific case), the spaser rapidly (within a time � 100 fs) relaxes as Nn → 0 through a series of
realaxation oscillations – see the black and magenta curves in Fig. 28 (g). The corresponding
inversion decays in this case almost exponentially with a characteristic time ∼ 1 ps determined
by the enhanced energy transfer to the SP mode in the metal – see the corresponding curves in
panel (h). Note that the SP population decays faster when the spaser is above the generation
threshold due to the stimulated SP emission leading to the higher local fields and enhanced
relaxation.
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5.7. Compensation of loss by gain and spasing

5.7.1. Introduction to loss compensation by gain

A problem for many applications of plasmonics and metamaterials is posed by losses inherent
in the interaction of light with metals. There are several ways to bypass, mitigate, or overcome
the detrimental effects of these losses, which we briefly discuss below.

(i) The most common approach consists in employing effects where the losses are not
fundamentally important such as surface plasmon polariton (SPP) propagation used in sens-
ing [23], ultramicroscopy [16, 19], and solar energy conversion [26]. For realistic losses, there
are other effects and applications that are not prohibitively suppressed by the losses and use-
ful, in particular, sensing based on SP resonances and surface enhanced Raman scattering
(SERS) [23, 180, 242, 279,280].

(ii) Another promising idea is to use superconducting plasmonics to dramatically reduce
losses [72,281–283]. However, this is only applicable for frequencies below the superconduct-
ing gaps, i.e., in the terahertz region.

(iii) Yet another proposed direction is using highly doped semiconductors where the Ohmic
losses can be significantly lower due to much lower free carrier concentrations [284]. However,
a problem with this approach may lie in the fact that the usefulness of plasmonic modes depends
not on the loss per se but on the quality factor Q, which for doped semiconductors may not be
higher than for the plasmonic metals.

(iv) One of the alternative approaches to low-loss plasmonic metamaterials is based on our
idea of the spaser: it is using a gain to compensate the dielectric (Ohmic) losses [285, 286]. In
this case the gain medium is included into the metamaterials. It surrounds the metal plasmonic
component in the same manner as in the spasers. The idea is that the gain will provide quantum
amplification compensating the loss in the metamaterials quite analogously to the spasers.

We will consider theory of the loss compensation in the plasmonic metamaterials using gain
[138, 139]. Below we show that the full compensation or overcompensation of the optical loss
in a dense resonant gain metamaterial leads to an instability that is resolved by its spasing
(i.e., by becoming a generating spaser). We further show analytically that the conditions of the
complete loss compensation by gain and the threshold condition of spasing – see Eqs. (80) and
(82) – are identical. Thus the full compensation (overcompensation) of the loss by gain in such
a metamaterial will cause spasing. This spasing limits (clamps) the gain – see Sec. 5.5 – and,
consequently, inhibits the complete loss compensation (overcompensation) at any frequency.

5.7.2. Permittivity of nanoplasmonic metamaterial

We will consider, for certainty, an isotropic and uniform metamaterial that, by definition, in a
range of frequencies ω can be described by the effective permittivity ε̄(ω) and permeability
μ̄(ω). We will concentrate below on the loss compensation for the optical electric responses;
similar consideration with identical conclusions for the optical magnetic responses is straight-
forward. Our theory is applicable for the true three-dimensional (3d) metamaterials whose size
is much greater than the wavelength λ (ideally, an infinite metamaterial).

Consider a small piece of such a metamaterial with sizes much greater that the unit cell but
much smaller than λ . Such a piece is a metamaterial itself. Let us subject this metamaterial
to a uniform electric field E(ω) = −∇φ(r,ω) oscillating with frequency ω . Note that E(ω)
is the amplitude of the macroscopic electric field inside the metamaterial. We will denote the
local field at a point r inside this metamaterial as e(r,ω) = −∇ϕ(r,ω). We assume standard
boundary conditions

ϕ(r,ω) = φ(r,ω), (83)

for r belonging to the surface S of the volume under consideration.
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To present our results in a closed form, we first derive a homogenization formula used in
Ref. [287] (see also references cited therein). By definition, the electric displacement in the
volume V of the metamaterial is given by a formula

D(r,ω) =
1
V

∫
V

ε(r,ω)e(r,ω)dV , (84)

where ε(r,ω) is a position-dependent permittivity. This can be identically expressed (by multi-
plying and dividing by the conjugate of the macroscopic field E∗) and, using the Gauss theorem,
transformed to a surface integral as

D =
1

V E∗(ω)

∫
V

E∗(ω)ε(r,ω)e(r,ω)dV =

1
V E∗(ω)

∫
S

φ ∗(r,ω)ε(r,ω)e(r,ω)dS , (85)

where we took into account the Maxwell continuity equation ∇ [ε(r,ω)e(r,ω)] = 0. Now, using
the boundary conditions of Eq. (83), we can transform it back to the volume integral as

D =
1

V E∗(ω)

∫
S

ϕ∗(r)ε(r,ω)e(r,ω)dS =

1
V E∗(ω)

∫
V

ε(r,ω) |e(r,ω)|2 dV . (86)

From the last equality, we obtain the required homogenization formula as an expression for the
effective permittivity of the metamaterial:

ε̄(ω) =
1

V |E(ω)|2
∫

V
ε(r,ω) |e(r,ω)|2 dV . (87)

5.7.3. Plasmonic eigenmodes and effective resonant permittivity of metamaterials

This piece of the metamaterial with the total size R � λ can be treated in the quasistatic ap-
proximation. The local field inside the nanostructured volume V of the metamaterial is given
by the eigenmode expansion [76, 147, 218]

e(r,ω) = E(ω)−∑
n

an

s(ω)− sn
En(r) , (88)

an = E(ω)
∫

V
θ(r)En(r)dV,

where we remind that E(ω) is the macroscopic field. In the resonance, ω = ωn, only one term
at the pole of in Eq. (88) dominates, and it becomes

e(r,ω) = E(ω)+ i
an

Ims(ωn)
En(r) . (89)

The first term in this equation corresponds to the mean (macroscopic) field and the second one
describes the deviations of the local field from the mean field containing contributions of the
hot spots [157]. The mean root square ratio of the second term (local field) to the first (mean
field) is estimated as

∼ f
Ims(ωn)

=
f Q

sn(1− sn)
, (90)
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where we took into account that, in accord with Eq. (34), En ∼V−1/2, and

f =
1
V

∫
V

θ(r)dV , (91)

where f is the metal fill factor of the system, and Q is the plasmonic quality factor. Deriving
expression (90), we have also taken into account an equality Ims(ωn) = sn(1− sn)/Q, which is
valid in the assumed limit of the high quality factor, Q � 1 (see the next paragraph).

For a good plasmonic metal Q � 1 – see Fig. 2. For most metal-containing metamaterials,
the metal fill factor is not small, typically f � 0.5. Thus, keeping Eq. (28) in mind, it is very
realistic to assume the following condition

f Q
sn(1− sn)

� 1 . (92)

If so, the second (local) term of the field (89) dominates and, with a good precision, the local
field is approximately the eigenmode’s field:

e(r,ω) = i
an

Ims(ωn)
En(r) . (93)

Substituting this into Eq. (87), we obtain a homogenization formula

ε̄(ω) = bn

∫
V

ε(r,ω) [En(r)]
2 dV , (94)

where bn > 0 is a real positive coefficient whose specific value is

bn =
1

3V

(
Q
∫

V θ(r)En(r)dV
sn (1− sn)

)2

(95)

Using Eqs. (94) and (27), (34), it is straightforward to show that the effective permittivity
(94) simplifies exactly to

ε̄(ω) = bn [snεm(ω)+(1− sn)εh(ω)] . (96)

5.8. Conditions of loss compensation by gain and spasing

In the case of the full inversion (maximum gain) and in the exact resonance, the host medium
permittivity acquires the imaginary part describing the stimulated emission as given by the
standard expression

εh(ω) = εd − i
4π
3

|d12|2 nc

h̄Γ12
, (97)

where εd = Reεh, d12 is a dipole matrix element of the gain transition in a chromophore center
of the gain medium, Γ12 is a spectral width of this transition, and nc is the concentration of
these centers (these notations are consistent with those used above in Secs. 5.4.1-5.6.3). Note
that if the inversion is not maximum, then this and subsequent equations are still applicable
if one sets as the chromophore concentration nc the inversion density: nc = n2 − n1, where n2

and n1 are the concentrations of the chromophore centers of the gain medium in the upper and
lower states of the gain transition, respectively.

The condition for the full electric loss compensation in the metamaterial and amplification
(overcompensation) at the resonant frequency ω = ωn is

Im ε̄(ω)≤ 0 (98)
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Taking Eq. (96) into account, this reduces to

snImεm(ω)− 4π
3

|d12|2 nc(1− sn)

h̄Γ12
≤ 0 . (99)

Finally, taking into account Eqs. (28), (47) and that Imεm(ω)> 0, we obtain from Eq. (99) the
condition of the loss (over)compensation as

4π
3

|d12|2 nc [1−Res(ω)]

h̄Γ12Res(ω)Imεm(ω)
≥ 1 , (100)

where the strict inequality corresponds to the overcompensation and net amplification. In Eq.
(97) we have assumed non-polarized gain transitions. If these transitions are all polarized along
the excitation electric field, the concentration nc should be multiplied by a factor of 3.

Equation (100) is a fundamental condition, which is precise [assuming that the requirement
(92) is satisfied, which is very realistic for metamaterials] and general. Moreover, it is fully
analytical and, actually, very simple. Remarkably, it depends only on the material character-
istics and does not contain any geometric properties of the metamaterial system or the local
fields. (Note that the system’s geometry does affect the eigenmode frequencies and thus enters
the problem implicitly.) In particular, the hot spots, which are prominent in the local fields of
nanostructures [76, 157], are completely averaged out due to the integrations in Eqs. (87) and
(94).

The condition (100) is completely non-relativistic (quasistatic) – it does not contain speed of
light c, which is characteristic of also of the spaser. It is useful to express this condition also
in terms of the total stimulated emission cross section σe(ω) (where ω is the central resonance
frequency) of a chromophore of the gain medium as

cσe(ω)
√

εdnc [1−Res(ω)]

ωRes(ω)Imεm(ω)
≥ 1 . (101)

We see that Eq. (100) exactly coincides with a spasing condition expressed by Eq. (80). This
brings us to an important conclusion: the full compensation (overcompensation) of the optical
losses in a metamaterial [which is resonant and dense enough to satisfy condition (92)] and the
spasing occur under precisely the same conditions.

We have considered above in Sec. 5.4.2 the conditions of spasing, which are equivalent to
(101). These are given by one of equivalent conditions of Eqs. (80), (82), (100). It is also illus-
trated in Fig. 26. We stress that exactly the same conditions are for the full loss compensation
(overcompensation) of a dense resonant plasmonic metamaterial with gain.

We would like also to point out that the criterion given by the equivalent conditions of Eqs.
(80), (82), (100), or (101) is derived for localized SPs, which are describable in the quasistatic
approximation, and is not directly applicable to the propagating plasmonic modes (SPPs). How-
ever, we expect that very localized SPPs, whose wave vector k � ls, can be described by these
conditions because they are, basically, quasistatic. For instance, the SPPs on a thin metal wire
of a radius R � ls are described by a dispersion relation [12]

k ≈ 1
R

[
− εm

2εd

(
ln

√
−4εm

εd
− γ
)]−1/2

, (102)

where γ ≈ 0.57721 is the Euler constant. This relation is obviously quasistatic because it does
not contain speed of light c.
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5.8.1. Discussion of spasing and loss compensation by gain

This fact of the equivalence of the full loss compensation and spasing is intimately related to the
general criteria of the the thermodynamic stability with respect to small fluctuations of electric
and magnetic fields – see Chap. IX of Ref. [28],

Im ε̄(ω)> 0 , Im μ̄(ω)> 0 , (103)

which must be strict inequalities for all frequencies for electromagnetically stable systems. For
systems in thermodynamic equilibrium, these conditions are automatically satisfied.

However, for the systems with gain, the conditions (103) can be violated, which means that
such systems can be electromagnetically unstable. The first of conditions (103) is opposite to
Eqs. (98) and (100). This has a transparent meaning: the electrical instability of the system is
resolved by its spasing.

The significance of these stability conditions for gain systems can be elucidated by the fol-
lowing gedanken experiment. Take a small isolated piece of such a metamaterial (which is a
metamaterial itself). Consider that it is excited at an optical frequency ω either by a weak exter-
nal optical field E or acquires such a field due to fluctuations (thermal or quantum). The energy
density E of such a system is given by the Brillouin formula [28]

E =
1

16π
∂ωRe ε̄

∂ω
|E|2 . (104)

Note that for the energy of the system to be definite, it is necessary to assume that the loss is
not too large, |Re ε̄| � Im ε̄ . This condition is realistic for many metamaterials, including all
potentially useful ones.

The internal optical energy-density loss per unit time Q (i.e., the rate of the heat-density
production in the system) is [28]

Q =
ω
8π

Im ε̄ |E|2 . (105)

Assume that the internal (Ohmic) loss dominates over other loss mechanisms such as the ra-
diative loss, which is also a realistic assumption since the Ohmic loss is very large for the
experimentally studied systems and the system itself is very small (the radiative loss rate is
proportional to the volume of the system). In such a case of the dominating Ohmic losses, we
have dE /dt = Q. Then Eqs. (104) and (105) can be resolved together yielding the energy E
and electric field |E| of this system to evolve with time t exponentially as

|E| ∝
√

E ∝ e−Γt , Γ = ωIm ε̄
/

∂ (ωRe ε̄)
∂ω

. (106)

We are interested in a resonant case when the metamaterial possesses a resonance at some
eigenfrequency ωn ≈ ω . For this to be true, the system’s behavior must be plasmonic, i.e.,
Re ε̄(ω) < 0. Then the dominating contribution to ε̄ comes from a resonant SP eigenmode n
with a frequency ωn ≈ ω . In such a case, the dielectric function [76] ε̄(ω) has a simple pole at
ω = ωn. As a result, ∂ (ωRe ε̄)/∂ω ≈ ω∂Re ε̄/∂ω and, consequently, Γ = γn, where γn is the
SP decay rate given by Eqs. (3) or (48), and the metal dielectric function εm is replaced by the
effective permittivity ε̄ of the metamaterial. Thus, Eq. (106) is fully consistent with the spectral
theory of SPs – see Sec. 3.4.

If the losses are not very large so that energy of the system is meaningful, the Kramers-
Kronig causality requires [28] that ∂ (ωRe ε̄)/∂ω > 0. Thus, Im ε̄ < 0 in Eq. (106) would lead
to a negative decrement,

Γ < 0 , (107)
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Fig. 29. Spasing criterion as a function of optical frequency ω . The straight line (red on
line) represents the threshold for the spasing and full loss compensation, which take place
for the curve segments above it. (a) Computations for silver. The chromophore concentra-
tion is nc = 6× 1018 cm−3 for the lower curve (black) and nc = 2.9× 1019 cm−3 for the
upper curve (blue on line). The black diamond shows the value of the spasing criterion for
the conditions of Ref. [262] – see the text. (b) Computations for gold. The chromophore
concentration is nc = 3× 1019 cm−3 for the lower curve (black) and nc = 2× 1020 cm−3

for the upper curve (blue on line).

implying that the initial small fluctuation starts exponentially grow in time in its field and en-
ergy, which is an instability. Such an instability is indeed not impossible: it will result in spasing
that will eventually stabilize |E| and E at finite stationary (CW) levels of the spaser generation.

Note that the spasing limits (clamps) the gain and population inversion making the net gain
to be precisely zero [137] in the stationary (continuous wave or CW) regime see Sec. 5.6 and
Fig. 27 (b). Above the threshold of the spasing, the population inversion of the gain medium is
clamped at a rather low level n21 ∼ 1%. The corresponding net amplification in the CW spasing
regime is exactly zero, which is a condition for the CW regime. This makes the complete loss
compensation and its overcompensation impossible in a dense resonant metamaterial where the
feedback is created by the internal inhomogeneities (including its periodic structure) and the
facets of the system.

Because the loss (over)compensation condition (100), which is also the spasing condition,
is geometry-independent, it is useful to illustrate it for commonly used plasmonic metals, gold
and silver whose permittivity we adopt from Ref. [30]. For the gain medium chromophores,
we will use a reasonable set of parameters: Γ12 = 5× 1013 s−1 and d12 = 4.3× 10−18 esu.
The results of computations are shown in Fig. 29. (Note that this figure expresses a condition
of spasing equivalent to that of Fig. 26). For silver as a metal and nc = 6× 1018 cm−3, the
corresponding lower (black) curve in panel (a) does not reach the value of 1, implying that no
full loss compensation is achieved. In contrast, for a higher but still very realistic concentration
of nc = 2.9× 1019 cm−3, the upper curve in Fig. 29 (a) does cross the threshold line in the
near-infrared region. Above the threshold area, there will be the instability and the onset of the
spasing. As Fig. 29 (b) demonstrates, for gold the spasing occurs at higher, but still realistic,
chromophore concentrations.

5.8.2. Discussion of published research on spasing and loss compensations

Now let us discuss the implications of these results for the research published recently on the
gain metamaterials. To carry out a quantitative comparison with Ref. [267], we turn to Fig. 29
(a) where the lower (black) curve corresponds to the nominal value of nc = 6×1018 cm−3 used
in Ref. [267]. There is no full loss compensation and spasing. This is explained by the fact
that Ref. [267] uses, as a close inspection shows, the gain dipoles parallel to the field (this is
equivalent to increasing nc by a factor of 3) and the local field enhancement [this is equivalent
to increasing nc by a factor of (εh + 2)/3. Because the absorption cross section of dyes is
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measured in the appropriate host media (liquid solvents or polymers), it already includes the
Lorentz local-field factor. To compare to the results of Ref. [267], we increase in our formulas
the concentration nc of the chromophores by a factor of εh +2 to nc = 2.9×1019 cm−3, which
corresponds to the upper curve in Fig. 29 (a). This curve rises above the threshold line exactly
in the same (infra)red region as in Ref. [267].

This agreement of the threshold frequencies between our analytical theory and numerical
theory [267] is not accidental: inside the region of stability (i.e., in the absence of spasing)
both theories should and do give close results, provided that the the gain-medium transition
alignment is taken into account, and the local field-factor is incorporated.

However, above the threshold (in the region of the overcompensation), there should be spas-
ing causing the population inversion clamping and zero net gain, and not a loss compensation.
To describe this effect, it is necessary to invoke Eq. (67) for coherent SP amplitude, which is
absent in Ref. [267]. Also fundamentally important, spasing, just like the conventional lasing, is
a highly-nonlinear phenomenon, which is described by nonlinear equations – see the discussion
after Eq. (67).

The complete loss compensation is stated in a recent experimental paper [288], where the
system is actually a nanofilm rather than a 3d metamaterial, to which our theory would have
been applicable. For the Rhodamine 800 dye used with extinction cross section [289] σ =
2×10−16 cm2 at 690 nm in concentration nc = 1.2×1019 cm−3, realistically assuming εd = 2.3,
for frequency h̄ω = 1.7 eV, we calculate from Eq. (101) a point shown by the magenta solid
circle in Fig. 29 (a), which is significantly above the threshold. Because in such a nanostructure
the local fields are very non-uniform and confined near the metal similar to the spaser, they
likewise cause a feedback. The condition of Eq. (92) is likely to be well-satisfied for Ref. [288].
Thus, the system may spase, which would cause the the clamping of inversion and loss of gain.

In contrast to these theoretical arguments, there is no evidence of spasing indicated in the
experiment – see Ref. [288], which can be explained by various factors. Among them, the sys-
tem of Ref. [288] is a gain-plasmonic nanofilm and not a true 3d material. This system is not
isotropic. Also, the size of the unit cell a ≈ 280 nm is significantly greater than the reduced
wavelength λ , which violates the quasistatic conditions and makes the possibility of homoge-
nization and considering this system as an optical metamaterial problematic. This circumstance
may lead to an appreciable spatial dispersion. It may also cause a significant radiative loss and
prevent spasing for some modes.

We would also like to point out that the fact that the unit cell of the negative-refracting (or,
double-negative) metamaterial of Ref. [288] is relatively large, a ≈ 280 nm, is not accidental.
As follows from theoretical consideration of Ref. [297], optical magnetism and, consequently,
negative refraction for metals is only possible if the minimum scale of the conductor feature
(the diameter d of the nanowire) is greater then the skin depth, d � ls ≈ 25 nm, which allows
one to circumvent Landau-Lifshitz’s limitation on the existence of optical magnetism [28,297].
Thus, a ring-type resonator structure would have a size � 2ls (two wires forming a loop) and
still the same diameter for the hole in the center, which comes to the total of � 4ls ≈ 100 nm.
Leaving the same distance between the neighboring resonator wires, we arrive at an estimate
of the size of the unit cell a � 8ls = 200 nm, which is, indeed, the case for Ref. [288] and other
negative-refraction “metamaterials” in the optical region. This makes our theory not directly
applicable to them. Nevertheless, if the spasing condition (80) [or (82), or (101)] is satisfied,
the system still may spase on the hot-spot defect modes.

In an experimental study of the lasing spaser [260], a nanofilm of PbS quantum dots (QDs)
was positioned over a two-dimensional metamaterial consisting of an array of negative split
ring resonators. When the QDs were optically pumped, the system exhibited an increase of
the transmitted light intensity on the background of a strong luminescence of the QDs but
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apparently did not reach the lasing threshold. The polarization-dependent loss compensation
was only ∼ 1 %. Similarly, for an array of split ring resonators over a resonant quantum well,
where the inverted electron-hole population was excited optically [290], the loss compensation
did not exceed ∼ 8 %. The relatively low loss compensation in these papers may be due either
to random spasing and/or spontaneous or amplified spontaneous emission enhanced by this
plasmonic array, which reduces the population inversion.

A dramatic example of possible random spasing is presented in Ref. [262]. The system stud-
ied was a Kretschmann-geometry SPP setup [291] with an added ∼ 1μm polymer film contain-
ing Rodamine 6G dye in the nc = 1.2×1019 cm−3 concentration. When the dye was pumped,
there was outcoupling of radiation in a range of angles. This was a threshold phenomenon with
the threshold increasing with the Kretschmann angle. At the maximum of the pumping inten-
sity, the widest range of the outcoupling angles was observed, and the frequency spectrum at
every angle narrowed to a peak near a single frequency h̄ω ≈ 2.1 eV.

These observations of Ref. [262] can be explained by the spasing where the feedback is
provided by roughness of the metal. At the high pumping, the localized SPs (hots spots), which
possess the highest threshold, start to spase in a narrow frequency range around the maximum
of the spasing criterion – the left-hand side of Eq. (100). Because of the sub-wavelength size
of these hot spots, the Kretschmann phase-matching condition is relaxed, and the radiation is
outcoupled into a wide range of angles.

The SPPs of Ref. [262] excited by the Kretschmann coupling are short-range SPPs, very close
to the antisymmetric SPPs. They are localized at subwavelength distances from the surface,
and their wave length in the plane is much shorter the ω/c. Thus they can be well described
by the quasistatic approximation and the present theory is applicable to them. Substituting the
above-given parameters of the dye and the extinction cross section σe = 4× 10−16 cm2 into
Eq. (101), we obtain a point shown by the black diamond in Fig. 29, which is clearly above
the threshold, supporting our assertion of the spasing. Likewise, the amplified spontaneous
emission and, possibly spasing, appear to have prevented the full loss compensation in a SPP
system of Ref. [274].

Note that the long-range SPPs of Ref. [277] are localized significantly weaker (at distances
∼ λ ) than those excited in Kretschmann geometry. Thus the long-range SPPs experience a
much weaker feedback, and the amplification instead of the spasing can be achieved. Generally,
the long-range SPPs are fully electromagnetic (non-quasistatic) and are not describable in the
present theory.

As we have already discussed in conjunction with Fig. 26, the spasing is readily achiev-
able with the gain medium containing common DBGSs or dyes. There have been numerous
experimental observations of the spaser. Among them is a report of a SP spaser with a 7-nm
gold nanosphere as its core and a laser dye in the gain medium [252], observations of the SPP
spasers (also known as nanolasers) with silver as a plasmonic-core metal and DBGS as the
gain medium with a 1d confinement [253,256], a tight 2d confinement [254], and a 3d confine-
ment [255]. There also has been a report on observation of a SPP microcylinder spaser [292].
A high efficiency room-temperature semiconductor spaser with a DBGS InGaAS gain medium
operating near 1.5 μm (i.e., in the communication near-ir range) has been reported [256].

The research and development in the area of spasers as quantum nano-generators is very
active and will undoubtedly lead to further rapid advances. The next in line is the spaser as an
ultrafast nanoamplifier, which is one of the most important tasks in nanotechnology.

In contrast to this success and rapid development in the field of spasing and spasers, there has
so far been a comparatively limited progress in the field of loss compensation by gain in meta-
materials, which is based on the same principles of quantum amplification as the spaser. This
status exists despite a significant effort in this direction and numerous theoretical publications,
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e.g., [267,293]. There has been so far a single, not yet confirmed independently, observation of
the full loss compensation in a plasmonic metamaterial with gain [288].

In large periodic metamaterials, plasmonic modes generally are propagating waves (SPPs)
that satisfy Bloch theorem [294] and are characterized by quasi-wavevector k. These are prop-
agating waves except for the band edges where ka = ±π , where a is the lattice vector. At the
band edges, the group velocity vg of these modes is zero, and these modes are localized, i.e.,
they are SPs. Their wave function is periodic with period 2a, which may be understood as a
result of the Bragg reflection from the crystallographic planes. Within this 2a period, these
band-edge modes can, indeed, be treated quasistatically because 2a � ls,λ . If any of the band-
edge frequencies is within the range of compensation [where the condition (80) [or, (82)] is
satisfied], the system will spase. In fact, at the band edge, this metamaterial with gain is similar
to a distributed feedback (DFB) laser [295]. It actually is a DFB spaser, which, as all the DFB
lasers, generates in a band-edge mode.

Moreover, not only the SPPs, which are exactly at the band edge, will be localized. Due to
unavoidable disorder caused by fabrication defects in metamaterials, there will be scattering of
the SPPs from these defects. Close to the band edge, the group velocity becomes small, vg → 0.
Because the scattering cross section of any wave is ∝ v−2

g , the corresponding SPPs experience
Anderson localization [296]. Also, there always will be SPs nanolocalized at the defects of
the metamaterial, whose local fields are hot spots – see Fig. 10 and, generally, Sec. 3.5 and
the publications referenced therein. Each of such hot spots within the bandwidth of conditions
(80) or (82) will be a generating spaser, which clamps the inversion and precludes the full loss
compensation.

Note that for a 2d metamaterial (metasurface), the amplification of the spontaneous emission
and spasing may occur in SPP modes propagating in plane of the structure, unlike the signal
that propagates normally to it as in Ref. [288].
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