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Abstract. Recently, there has been an increased attention and rapid develop-
ment in the field of nanoscale collective electronic dynamics on surfaces of
metal nanostructures, which is due to excitations called surface plasmons (SPs).
This field, known as nanoplasmonics, is very promising for such applications
as the next generation optoelectronics, computations and information storage on
the nanoscale, ultrasensitive detection of threats and spectroscopy of physical,
chemical and biological nano-objects. Due to their broad spectral bandwidth,
SPs possess ultrafast dynamics, with times as short as hundreds of attoseconds.
In this paper, we discuss progress in the excitation, control and applications of
the ultrafast nanoplasmonic fields. Special attention is devoted to attosecond
visualization and coherent control of the nanoscale optical fields. Prospective
applications of ultrafast nanoplasmonics are discussed.
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1. Introduction

Nanooptics and nanoplasmonics are experiencing presently a period of explosive growth and
attract a great interest. Nanoplasmonics deals with electronic processes at the surfaces of
metal nanostructures, which are due to electronic excitations called surface plasmons (SPs)
that can localize optical energy on the nanoscale [1]–[3]. The nanoplasmonic processes can
potentially be the fastest in optics: their shortest evolution times are defined by the inverse
spectral width1ω−1 of the region of the plasmonic resonances (1ω ≈ 4 eV) and are on the order
of hundreds of attoseconds [4]. The dephasing times of the SP excitations are also ultrashort,
in the 10–100 fs range [5]–[9]. Such nanolocalization and ultrafast kinetics make plasmonic
nanostructures promising for various applications, especially for ultrafast computations, data
control and storage on the nanoscale.

These and many other applications require precise control over the optical excitations
of the nanostructures in time and space on the femtosecond–nanometre scale. Such a control
at optical frequencies is difficult to impose with conventional metal nanowires leads. The
bandwidth of the nanowire transmission may not be sufficient, the dispersion and delay are
significant, and losses of nanowaveguides are large. An even more serious problem is posed
by cross-talk: the capacitive coupling between different nanowires connected to a nanosystem
is large, proportionally to frequency, at optical frequencies. One of the possibilities to connect
a nanosystem to far-field sources of energy is to use tapered adiabatic waveguides [10]–[13].
Another approach is using the so-called hyperlenses, which are anisotropic media consisting
of layers of metal and dielectrics that connect the far-field radiation and near-field (local
field) zone [14]. All these methods invoke external metal objects in the nano-vicinity of the

New Journal of Physics 10 (2008) 025031 (http://www.njp.org/)

http://www.njp.org/


3

nanosystem, which may be perturbing: they would induce non-radiative and radiative losses
and cross-talk between parts of the nanosystem.

Therefore, it would be desirable to control the plasmonic nanostructures with light
wirelessly, with far-field electromagnetic radiation. However, such radiation cannot be focused
on the nanoscale. In other words, the optical radiation does not have spatial degrees of freedom
on the nanoscale. However, it has phase, amplitude and polarization degrees of freedom.
The idea to control the spatial distribution of the optical energy on the nanoscale by the
phase modulation of the incident wave has been proposed [15, 16]. The phase, polarization
and amplitude modulation proved to be efficient degrees of freedom in controlling the local
fields [15]–[21].

In this paper, we review from unified positions the latest theoretical ideas and developments
in the field of coherent control on the nanoscale. The paper is organized as follows. In section2,
we discuss both qualitative ideas and summarize the main points of the quantitative theory.
In section3, we discuss the recently proposed idea of the attosecond nanoplasmonic field
microscope [4]. The presentation is made more self-contained by the related details of the
theory presented in section2; also, this approach is contrasted to recently published materials
on hyperlenses. In section4, we present a new approach to ultrafast coherent control on the
nanoscale based on the idea of the time reversal [22].

2. Theory of the coherent control on the nanoscale

2.1. Qualitative physics

The physics of the coherent control of the nanoscale energy localization can be described as
directed interference of the SPs excited by the incident plane waveE0(t), which does not have
any spatial dependence on the scale of the nanosystem. This excitation waveform by its phase
and amplitude at different frequenciesω, i.e. by its amplitude in the Fourier spaceE0(ω), imparts
the phase and amplitude on the correspondingly localized SPs eigenmodes. These SPs interfere
in real space (on the nanoscale) and time (on intervals of a fraction of the inverse bandwidth
1ω−1, i.e. hundreds of attoseconds). This interference depends on the phases and amplitudes of
the SPs oscillations and is therefore coherently controllable by the excitation waveformE0(t).

It is easy to estimate the maximum number of the degrees of freedom contained in a
modulated optical pulse. The time of the phase memory of the system is defined by the
dephasing time, which is an inverse relaxation rate of the optical (dipole) polarizationγ . This
polarization relaxation rate for SPs has been found in [23] as

γ (ω) =
Im εm(ω)

Re(∂εm(ω)/∂ω)
, (1)

whereεm(ω) is the frequency-dependent dielectric permittivity of the plasmonic metal. Each
half-period of the excitation field oscillations within the interval ofγ (ω)−1 defines two
characteristic variables: the instantaneous amplitude and the instantaneous period for each of the
two polarizations, overall four degrees of freedom. Thus the maximum number of the degrees
of freedom is

Ndf =
4

π

ω

γ
∼ Q = ω

Re(∂εm(ω)/∂ω)

Im εm(ω)
, (2)

whereQ = ω/γ (ω) is the quality factor of the plasmonic oscillations. For example, for the best
plasmonic metal, silver, this factor is of the order of several tens for the most of the visible
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region. This provides a significant number of the degrees of freedom to control the nanoscale
distribution of the local fields in space and time.

2.2. Spectral Green’s function theory of coherent control on the nanoscale

Below in this section, for the sake of completeness and convenience, we outline obtaining
Green’s function theory of the coherent control on the nanoscale. We base our consideration
on the framework of spectral theory [3, 16, 24]. Consider a system consisting of a metal with
dielectric permittivityε(ω) embedded in a dielectric background with dielectric constantεd.
The geometry of the system is described by the characteristic function2(r), which equals 1 in
the metal and 0 in the dielectric.

For a nanosystem, which has all sizes much less than the relevant electrodynamic
dimensions (radiation wavelength across the propagation direction of the excitation wave and
the skin depth in this direction), the quasistatic approximation is applicable. In such a case, we
can take into account only the static optical potentialϕ(r , t). In the frequency domain, it satisfies
the continuity equation[

∂

∂r
2(r)

∂

∂r
− s(ω)

∂2

∂r2

]
ϕ(r , ω) = 0, (3)

wheres(ω) = (1− εm(ω)/εd)
−1 is the spectral parameter [25].

At the boundary of the system, we impose boundary conditions. There may be two types
of them; firstly the Dirichlet conditions,

ϕ(r , ω) = ϕ0(r , ω), for r ∈ 0, (4)

where0 denotes the boundary, andϕ0(r , ω) is the external (excitation) electric field potential.
The second type are the mixed Dirichlet–Neumann boundary conditions,

ϕ(r , ω) = ϕ0(r , ω), for r ∈ 0⊥,

∂ϕ(r , ω)

∂rn
= 0, for r ∈ 0‖, (5)

where0⊥ denotes the planes of the boundary that are normal to the external field, and0‖ denotes
those parallel to the external field;rn is the vector normal to the surface.

Green’s function satisfies a similar equation with theδ-function on the right-hand side[
∂

∂r
2(r)

∂

∂r
− s(ω)

∂2

∂r2

]
Ḡr(r , r ′ω) = δ(r − r ′) (6)

and homogeneous Dirichlet or Dirichlet–Neumann boundary conditions, i.e. equation (4) or (5)
with the zero right-hand side parts.

It is convenient to expand the Green’s function over eigenmodesϕn(r) and the
corresponding eigenvaluessn that satisfy a homogeneous counterpart of equation (3)[

∂

∂r
2(r)

∂

∂r
− sn

∂2

∂r2

]
ϕn(r) = 0, (7)
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with the homogeneous boundary conditions. This spectral expansion of the Green’s function
can be readily obtained from equation (6). It has an explicit form

Ḡr(r , r ′
; ω) =

∑
n

ϕn(r) ϕn(r ′)∗

s(ω) − sn
. (8)

Two features of this expansion are important. First, it separates the dependencies on
geometry and material properties. The geometrical properties of the nanosystem enter only
through the eigenfunctionsϕn and eigenvaluessn that are independent of the material properties
of the system. Therefore, they can be computed for a given geometry once and stored, which
simplifies and accelerates further computations. Complementarily, the material properties of the
system enter equation (8) only through a single function: spectral parametersn.

The second important feature is that this Green’s function satisfies exact analytical
properties due to the form of equation (8) that contains only simple poles in the lower half-plane
of the complex frequencyω and does not have any singularities in the upper half-plane ofω.
Consequently,Ḡr is a retarded Green’s function that automatically guarantees the causality of
the results of time-dependent calculations. Namely,Ḡr(r , r ′

; t) = 0 for t < 0.
Having this Green’s function, we can find the local field potentialϕ(r , ω) generated by the

nanosystem in response to any excitation field (external potential)ϕ0(r , ω),

ϕ(r) = ϕ0(r , ω)−

∫
V

ϕ0(r ′, ω)
∂

∂r ′
2(r ′)

∂

∂r ′
Ḡr(r , r ′

; ω) d3r ′. (9)

We can also introduce the retarded tensor Green’s functionGr
αβ in terms of the corresponding

scalar Green’s function̄Gr:

Gr
αβ(r , r ′

; ω) =
∂2

∂rα∂r ′

β

Ḡr(r , r ′
; ω), (10)

where α, β = x, y, z, are vector indices. This tensor determines components of the dyadic
Green’s functionG as(Gr)αβ = Gr

αβ(r , r ′
; ω).

For excitation from a far zone, the external fieldE0 in the vicinity of the nanosystem is
uniform, ϕ0(r , ω) = −E0(ω)r . Taking this into account and Fourier transforming equation (9)
to the time domain, we obtain the resulting local optical electric fieldE at the nanosystem in
terms of the dyadic Green’s functionGr as

E(r , t) = E0(r , t) +
∫

d3r ′dt ′Gr(r , r ′
; t − t ′)2(r ′)E0(t

′), (11)

where the integration over coordinatesr ′ is extended over the entire volume of the system, and
the integration over timet ′ is running over the duration of the excitation pulse.

We will also need the reaction of the system to a source of dielectric polarizationP(r , t).
To find it, we consider the continuity equation (3) where the right-hand side is changed to
4π(∂P/∂r)/εd. Applying the Green’s function to this equation, we obtain the resulting local
potential as

ϕL(r , ω) =
4π

εd

∫
d3r ′Gr(r , r ′

; ω)
∂P(r ′, ω)

∂r ′
. (12)
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Employing the Gauss theorem (integrating by parts), we find the corresponding local field,

EL(r , ω) =
4π

εd

∫
d3r ′Gr(r , r ′

; ω)P(r ′, ω), (13)

where we use the dyadic notations. For an oscillating point dipoled(t) at a positionr0, we have
P(r , t) = δ(r − r0)d(t). Using this to eliminate the integration in equation (13) and transforming
it to the time domain, we obtain

EL(r , t) =
4π

εd

∫
dt ′Gr(r , r0; t − t ′) d(r0, t ′). (14)

3. Attosecond nanoplasmonic field microscope [ 4]

3.1. Introduction of principles

Recently significant attention has been devoted to the development of attosecond science and
technology, namely pulse generation, physical system excitation, detection, spectroscopy and
electron motion control on the attosecond timescale [26]–[38].

The proposed attosecond nanoplasmonic field microscope [4] combines two mod-
ern techniques: photoelectron emission microscopy (PEEM) and attosecond streaking spec-
troscopy [39]. A plasmonic nanostructure is excited by an intense, waveform-controlled field
in the optical spectral range that drives collective electron oscillations (SPs). This generates op-
tical fields localized on the nanometre scale. An attosecond extreme ultraviolet (XUV) pulse,
which is produced from and synchronized with the driving optical pulse, is then sent to the
system.

This XUV pulse produces photoelectrons that, owing to their large energy and short
emission time (determined by the attosecond pulse duration), escape from the nanometre-
sized regions of local electric fields enhanced by plasmon resonances within a fraction of
the oscillation period of the driven plasmonic field. The ultrashort escape time implies a
final energy change of the emitted photoelectrons that is proportional to the local electric
potential at the surface at the instant of electron release. This is in sharp contrast to previous
attosecond streaking experiments performed in macroscopic volumes of gas-phase media, where
the electron escape times are longer than the optical period; consequently, the change in electron
energy probes the vector potential of the optical field [39]. For nanoplasmonic systems, the
imaging of the emitted XUV-induced photoelectrons by an energy-resolving photoelectron
emission microscope probes the electric field at the surface as a function of the XUV pulse
incidence time and the position at the surface with an attosecond temporal and nanometre-scale
spatial resolution.

3.2. Electron acceleration by nanoplasmonic fields

Let us discuss different regimes of the electron emission by an XUV pulse to identify those
realistic for our conditions and conducive to our goals. The escape velocity for an electron can
be estimated asve =

√
2(h̄ωXUV − Wf)/m, wherem is the electron mass,ωXUV is the frequency

of the XUV pulse, andWf is the metal workfunction. The electron escape time from a region
of local field of sizeb is τe = b/ve. The most important case for our purposes is the one to
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be called a regime of instantaneous acceleration, when an electron leaves the local field region
much faster than this field oscillates in time, i.e.

τe � T, (15)

whereT = 2π/ω is a characteristic period of the optical excitation, andω is the excitation pulse
carrier frequency.

Under this condition, an electron is driven by a nearly frozen, instantaneous local
electrostatic potentialϕ(r , tXUV ), where tXUV is the emission time defined with a sufficient
precision by the incidence time of the XUV pulse. The final kinetic energy of an electron,
which is measured by the PEEM, is found from the energy conservation,

EXUV (r , tXUV ) = h̄ωXUV − Wf + eϕ(r , tXUV ), (16)

wheree is the electron charge, andr the emission point. In a sharp contrast to attosecond
streaking in the gas phase [39], this energy does not depend on the initial momentum of the
photoelectron or its subsequent flight trajectory.

Let us make estimates for the currently available XUV pulse parameters [40]: pulse
duration τp = 170 as and photon energȳhωXUV = 91 eV. In such a case, assuming the
workfunctionWf = 5 eV, we obtain the escape velocityve = 5× 108 cm s−1 and the escape time
for the localization distanceb = 1 nm asτe = 180 as. Considering a near-infrared (NIR) driving
pulse with a characteristic periodT ∼ 3 fs, we see that the instantaneous regime condition (15) is
well satisfied for the optical field localization length that is up to several nanometres. Temporal
resolutionτr of the attosecond plasmonic field microscope is determined by both flight time
τe through the region of nanolocalized optical fields and durationτp of the XUV pulse itself,
τr ∼ τe + τp. For a NIR driving field andb. 3 nm, this resolution is sufficient,τr � T . For
visible excitation and plasmonic frequencies, sufficient temporal resolution can be achieved
in the future with attosecond pulses delivered with photon energyh̄ωXUV of several hundred eV
to a keV and duration below 100 as.

3.3. Fields as visualized by attosecond nanoplasmonic field microscope

Concentrating on this most important case of the instantaneous acceleration described by
equations (15) and (16), we start with a model of a silver [41] random planar composite (whose
geometry will be described below in the next paragraph). We apply an s-polarized (along the
z-direction), waveform-controlled [30], 5.5 fs optical pulseE0(t) shown in figure1(a). We
have computed local electric optical potentialϕ(r , t) and fieldE(r , t) using the quasistatic
spectral-expansion Green’s function method [3, 15, 16], as given by equations (9) and (11).
The excitation intensity is kept at a moderate level ofI = 10 GW cm−2 to assure non-damaging
conditions of the excitation. The carrier frequency of the optical (NIR) pulse is chosen to be
1.55 eV (corresponding to 800 nm vacuum wavelength). The temporal kinetics of the local field
at a site where it reaches its global maximum is displayed in figure1(b). It shows the initial
period of the driven oscillations fort < 20 fs, where the response closely, albeit with a delay,
reproduces the 5 fs excitation pulse, which reflects the sufficient bandwidth of this plasmonic
system. At longer times, after the end of the excitation pulse, the free-induction evolution shows
the interference beatings of several plasmonic eigenmodes. The maximum enhancement in this
hot spot isQ ≈ 30.

The random planar composite is generated as a collection of uncorrelated silver cubes
(monomers) positioned on a plane in vacuum, which is illustrated in figure2(a) for a monomer
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Figure 1. Excitation field and kinetics of the local field at a hot spot.
(a) Excitation fieldE0(t) as a function of timet . (b) Local fieldE(rhs, t) at the
positionrhs of the maximum (‘hottest spot’) in figure2(b) as a function of timet .
The field magnitude is shown relative to the amplitude of the excitation pulse,
which is set to 1. The vertical arrow denotes the oscillation period within which
an XUV pulse is applied to probe the local field.

size of 4 nm. As characteristic of plasmonic nanosystems, there are ‘hot spots’ of the local
fields induced by the optical excitation. The local field dynamics is shown in figure1(b) for the
‘hottest spot’ where the local field reaches its global maximum in space and time. We assume
that an XUV-attosecond pulse is incident at this system delayed with respect to the waveform-
controlled [30] driving field in such a way that it probes the system close to the instance of
the local field maximum (indicated by an arrow in figure1(b)). According to equation (16),
we compute the energy shift of an electron emitted by such an XUV pulse, which is due to
the acceleration in the local plasmonic fields, as1EXUV (r , tXUV ) = eϕ(r , tXUV ). We assume that
these photoelectrons are spatially resolved by a PEEM and show in figures2(b)–(f) a series
of the electron energy distributions with an interval of1tXUV ≈ 400 as during a half-period
of the driving field. The distributions are shown as three-dimensional (3D) maps in (b)–(f).
Even for the moderate excitation intensities used, the energy shift|1EXUV | in hot spots of the
plasmonic potential is rather large (∼10 eV) and, consequently, relatively easily measurable.
There is a pronounced nanometre–attosecond kinetics of the electron energy observed in these
distributions with sharp hot spots indicative of those of the local fields. These hot spots are
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P = 10 GW/cm2, hω0 = 1.55 eV

t = 67.22 fst = 66.83 fs

t = 67.99 fst = 67.60 fs

t = 66.45 fs

Figure 2. Topography of nanosystem and spatio-temporal kinetics of the local
field potential as detected by an attosecond plasmonic field microscope. Intensity
of the excitation optical pulseP = 10 GW cm−2, and photon energȳhω =

1.55 eV. (a) Topography of the nanosystem: random planar composite consisting
of 4× 4× 4 nm3 silver cubes arranged on a plane with fill factor 0.5. This
composite is smoothed within 2 nm to improve numerical precision. (b)–(f)
Distributions of energy shift1EXUV of electrons emitted by an XUV pulse in
the plane of this nanostructure shown as 3D maps for different momentstXUV

(as indicated in the panels) of the XUV pulse incidence within the half-cycle of
local field oscillations.

concentrated around the edges and voids of the metal nanostructure as is a general trend in
nanoplasmonics.

3.4. Discussion of attosecond nanoplasmonic field microscope

There are some interesting features of this proposed attosecond nanoplasmonic field microscope
worth discussing. A remarkable property of this microscope is that it is, for any practical
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purpose, non-invasive (non-perturbing). The attosecond XUV pulse is relatively very weak:
the stream of such pulses in the microscope causes very weak ionization: the theory shows that
they emit∼103 electrons per second only [4]. In contrast, the optical (infrared) field that excites
the system can, in principle, be strong and cause significant nonlinear effects and ionization.
However, these effects cannot be considered as perturbation, because they are present in the
system anyway and are the subject of the study and, for a functional system, a part of its
functioning.

The second point is that there are no wires or any other objects external to the system
brought close to it to study its functioning such as, for instance, the tips of near-field
microscopes [1], or the so-called superlenses or hyperlenses [14, 42], or metal wire arrays
[43, 44]. Such metal objects in the nano-vicinity of the system would have been perturbing.

The third point is that the attosecond nanoplasmonic field microscope is an example of a
device exploiting nonlinear interaction of electromagnetic pulses: one of them is the excitation
optical (near-infrared) pulse, and the second is the attosecond pulse. On the other hand, it is
an example of coherent control because spatial and energy distributions of the photoelectrons
depend on the phase of the excitation optical radiation at the instance of the probing attosecond
pulse. It is precisely the nonlinear phenomenon of this effect that makes possible the observation
of the ultrafast fields by the PEEM, which is by itself a device without temporal resolution—
cf [16].

4. Ultrafast coherent control by time reversal

4.1. Introduction to problem

The coherent control of the quantum state of atoms and molecules is based on the directed
interference of the different quantum pathways of the optical excitation [45]–[51], which is
carried out by properly defining the phases of the corresponding excitation waves. This coherent
control can also be imposed by an appropriate phase modulation of the excitation ultrashort
(femtosecond) pulse [48], [52]–[54]. Shaping the polarization of the excitation femtosecond
pulse has proven to be a useful tool in controlling quantum systems [17].

It was predicted to be possible to coherently control the ultrafast spatial distribution of
the optical excitation energy in nanostructures by pulse shaping (phase modulation) of an
ultrashort excitation pulse [15, 16]. Such a control has been observed in the two-photon electron
emission from silver nanostructured surfaces [19, 21]. Polarization-shaped pulses have been
found to be an efficient tool in controlling the femtosecond dynamics of symmetric metal
nanosystems [20, 55]. The coherent control of the electron emission by the phase-controlled
XUV attosecond pulses superimposed on optical radiation recently has been proposed as the
basis of an attosecond nanoplasmonic field microscope [4], which has been discussed above in
section3.

A major problem in the coherent control of the spatio–temporal (nanometre–femtosecond)
dynamics of a nanosystem is the determination of a femtosecond optical waveform, which is
phase-, amplitude-, and polarization-modulated, in thefar field that would drive a nanosystem
along such a pathway that at a desired time (with femtosecond precision) the optical energy
will concentrate at a required site (with nanometre resolution). A theoretical, computational
solution of this problem can be carried out, in principle, using genetic learning algorithms [48].
However, this procedure is cumbersome, and the obtained waveforms are often complicated and
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Figure 3. (a) Geometry of nanosystem, initial excitation dipole and its oscillation
waveform. The nanosystem as a thin nanostructured silver film is depicted in
blue. A position of the oscillating dipole that initially excites the system is
indicated by a double red arrow, and its oscillation in time is shown by a bold red
waveform. (b) Field in the far-field zone that is generated by the system following
the excitation by the local oscillating dipole: vector{Ex(t), Ez(t)} is shown as
a function of the observation timet . The color corresponds to the instantaneous
ellipticity as explained in the text in connection with (c), the same as in (b) but
for a time-reversed pulse in the far zone that is used as an excitation pulse to
drive the optical energy nanolocalization at the position of the initial dipole.

difficult to interpret (cf [21]). Our solution of this major problem is based on an idea of time-
reversal that has originally been proposed and used to control the focusing of acoustic waves
and microwave radiation [56]–[58]. These studies required use of a reverberating chamber to
cause multiple interactions of the waves with the system needed to transfer the information to
the far field. The electromagnetic subwavelength focusing also required a subwavelength-scale
metal structure (a metal wire brush) to be positioned in the vicinity of the target system as a
focusing antenna. In contrast, in nanoplasmonics there is no need for the reverberating chamber
or the metal brush antenna, because the plasmonic nanosystem plays the roles of both of them.
It confines the plasmonic modes for long times relative to their oscillation periods and also
nano-localizes these modes.

4.2. Principles of time-reversal solution for coherent control

The idea of our time-reversal solution [22] of nanoscale coherent control can be described
using the schematic of figure3. A nanosystem is excited by an external ultrafast (femtosecond)
nanosource of radiation at its surface. As such we chose an oscillating dipole indicated by a
double red arrow in figure3(a). This dipole generates a local optical electric field shown by
a bold red waveform. This field excites SP oscillations of the system in its vicinity; in turn
these oscillations excite other, more distant regions, and so forth until the excitation spreads
out over the entire system. The relatively long relaxation time of these SP modes leads to the
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long ‘reverberations’ of the plasmonic fields and the corresponding far-zone optical electric
field. The latter is shown in figure3(b) where one can see that a complicated vector waveform
is predicted. This waveform is time reversed, as shown in figure3(c), and sent back to the
system as an excitation plane wave from thefar zone. If the entire field, in the whole space
including the near-field (evanescent) zone, were time reversedand the system were completely
time-reversible, which would imply the absence of any dielectric losses, then the system would
have been compelled by this field exactly to back-trace its own evolution in time. This would
have lead to the concentration of the local optical energy exactly at the position of the initial
dipole at a time corresponding to the end of the excitation pulse.

Indeed, the system is somewhat lossy, which means that it is not exactly time reversible.
Nevertheless, these losses are small, and one may expect that they will not principally change the
behavior of the system. Another problem appears to be more significant: the evanescent fields
contain the main information on the nano-distribution of the local fields in the system, and they
cannot be time reversed from the far zone because they are exponentially small, practically lost
there. However, our idea is that the nanostructured metal system itself plays the role of the metal
brush of [58] continuously coupling the evanescent fields to the far zone. Therefore the fields
in the far zone actually contain, in their reverberations, most information about the evanescent
fields that will be regenerated in the process of the time reversal. These two arguments, regarding
the possibility to neglect the losses and the regeneration of the near-fields, of course, should and
will be scrutinized and confirmed by our computations presented later in this paper.

4.3. System and computation procedure

We will illustrate our idea by considering a random plasmonic nanolayer whose geometry is
shown in gray at the bottom of figure4. In specific computations, as the plasmonic metal, we
consider silver whose dielectric permittivityεm we adopt from bulk data [41]. This system
has been generated by randomly positioning 2× 2× 2 nm3 metal cubes on a plane, which for
certainty we will consider as thexz-coordinate plane. The random system shown at the bottom
of figure4 has filling factor of 0.5.

The interaction of a nanosystem with electromagnetic pulses is described in Green’s
function approach using quasistatic approximation [15, 16, 24]; some necessary details of
this approach are given above in section2.2. It is known that the optical excitation energy in
random plasmonic nanostructures localizes in ‘hot spots’ whose size is on the nanoscale and is
determined by the minimum scale of the system inhomogeneities [3, 59, 60]. Initially, to find
positions of these hot spots in our system, we apply an ultrashort NIR pulse whose spectral
width was very large, covering a band from 1.1 to 1.7 eV. The pulse polarization is along the
z-axis (the incidence direction is normal to the plane of the nanostructure, i.e. along they-axis).
The resulting optical electric fieldE is expressed in terms of the external electric field of the
excitation optical waveE0 and retarded dyadic Green’s functionGr by equation (11).

The hot spots are always localized at the surface of the metal, predominantly at the
periphery of the system. Their intensities found as the result of these computations are depicted
by colors at the bottom of figure4. The highest local intensity is indicated by red, and the lowest
by blue in the region surrounding the metal. We have randomly selected two of these hot spots
for our computations as denoted by letters A and B in the figure.

To generate the field in the far zone, we take a point dipole and position it at a surface of
the metal at pointr0 at such a hot spot, as described in the discussion of figure3 above. The
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Figure 4. Schematic of plasmonic-nanosystem geometry, local fields, and pulses
generated in the far field. Insert: the geometry of a nanosystem is shown by dark
gray, and the local fields in the region surrounding it are shown by colors. The
highest local field intensity is depicted by red and the lowest intensity is indicated
by blue (in the rainbow sequence of colors). Panels A and B: the excitation
waveforms in the far fields obtained as described in the text by positioning the
initial excitation dipole at the metal surface at the locations indicated by the
corresponding lines. Coordinate vectorsρ of points A and B in thexz-plane
are (in nm):ρA = (11, 22) andρB = (7, 16). The instantaneous degree of linear
polarizationε is calculated as the eccentricity of an instantaneous ellipse found
from a fit to a curve formed by vector{Ex(t), Ey(t)} during an instantaneous
optical period. The pure circular polarization corresponds toε = 0 and is denoted
by blue-violet color; the pure linear polarization is forε = 1 indicated by red.

near-zone fieldEL(r , t) generated in response to this point dipole is found from the Green’s
function relation as equation (14). Knowing this local electric field, we calculate the total
radiating optical dipole moment of the nanosystem in the frequency domain as

D(ω) =
1

4π

∫
d3r [εm(ω) − εd] 2(r)EL(r , ω). (17)
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To recall our convention, here and everywhere the frequency- and time-domain quantities, as
indicated by their argumentsω andt , are Fourier transforms of each other. The field in the far
zone produced by this radiating dipole is given by a standard electrodynamic formula (see, e.g.
equation (67) in [61]). The time-reversed field is generated by the time-reversed dipoleDT(t)
that is complex-conjugated in the frequency domain,DT(ω) = D(ω)∗.

The dependence on time of the initial excitation dipole,d(r0, t) was an ultrashort Gaussian-
shaped pulse of 12 fs duration with the carrier frequencyh̄ω0 = 1.2 eV. Following the procedure
described above, the fields shown in figures3 and 4 have been calculated for the radiation
propagating in they-direction (normal to the plane of the nanostructure). These fields simply
copy the retarded time evolution of the emitting dipole.

In the final stage of our calculations, the time-reversed excitation pulse is sent back to the
system as a plane wave propagating along they-direction (normal to the nanosystem plane).
To calculate the resulting local fields, we again use Green’s function equation (11), where the
shaped excitation pulse substitutes for fieldE0.

4.4. Excitation pulses

The electric field of the excitation wave was a modulated waveform (including amplitude,
phase and polarization modulation) that has been computed as described above in the previous
subsection. The optical excitation energy can only be concentrated at sites where SP eigenmodes
localize. For the present system, these are the hot spots shown by color at the bottom of figure4.
The corresponding calculated excitation waveforms are displayed in panels as vector plots
shown as functions of time{Ex(t), Ez(t)}. The computation results are shown for two hot spots
labeled as A and B, which are considered as an example.

There are several important features of these waveforms deserving our attention and
discussion. Firstly, these waveforms are rather long in duration: much longer than the excitation-
dipole 12-fs pulses. This confirms our understanding that the initial dipole field excites local SP
fields that, in a cascade manner, excite a sequence of the system SPs, which ring down for
a relatively long time (over 200 fs, as shown in the figure). This long ring-down process is
exactly what is required for the nanostructure to transfer to the far-field zone the information
on the near-zone local (evanescent) fields as is suggested by our idea presented above in the
introduction. The obtained fields are by shape very similar to the controlling pulses for the
microwave radiation [58]. However, a principal difference is that in the microwave case the
long ringing-down is due to the external reverberation chamber, while for the nanoplasmonic
systems it is due to the intrinsic evolution of the highly resonant SP eigenmodes that possess
high Q-factors (setting a reverberation chamber around a nanosystem would have been, indeed,
unrealistic).

Secondly, one can see that the pulses in figure4 have very nontrivial polarization properties
ranging from pure linear polarization (indicated by red as explained in the caption to figure4)
to circular polarization indicated by blue, including all intermediate degrees of circularity. The
temporal-polarization structure of pulses A and B in figure4 is very complicated, somewhat
reminiscent of that of [20], which was obtained by a genetic adaptive algorithm. However, in
our case these pulses are obtained in a straightforward manner, by applying the well-known,
deterministic Green’s function of the system, which is a highly efficient and fast method.

The third, and most important, feature of the waveforms in figure4 is that they are highly
site-specific: pulses generated by the initial dipole in different positions are completely different.
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This is a very strong indication that they do transfer to the far far-field zone the information
about the complicated spatio-temporal structure of the local, near-zone fields. This creates a
pre-requisite for studying a possibility to use these pulses for the coherently-controlled nano-
targeting.

4.5. Coherent control of spatio-temporal energy distribution on the nanoscale by time reversal

Now, we turn to the crucial test of the nanofocusing induced by the excitation pulses discussed
above in conjunction with figure4. Because of the finite time window (T = 228 fs) used for
the time reversal, all these excitation pulses end and should cause the concentration of the
optical energy (at the corresponding sites) at the same time,t = T = 228 fs (counted from the
moment the excitation pulse starts impinging on the system). After this concentration instant,
the nanofocused fields can, in principle, disappear (dephase) during a very short period on the
order of the initial dipole pulse length, i.e.∼10 fs. Thus this nanofocusing is a dynamic, transient
phenomenon.

Note that averaging (or, integration) of the local-field intensityI (r , t) = |E(r , t)|2 over
time t would lead to the loss of the effects of the phase modulation. This is due to a mathematical
equality

∫
∞

−∞
I (r , t) dt =

∫
∞

−∞
|E(r , ω)|2 dω/(2π), where the phase of the field is certainly

eliminated from the expression in the right-hand side. Thus the averaged intensity of the
local fields is determined only by the local power spectrum of the excitation|E(r , ω)|2 and,
consequently, is not coherently controllable. Very importantly, such a cancellation is not valid
for nonlinear phenomena. In particular, two-photon processes such as two-photon fluorescence
or two-photon electron emission that can be considered as proportional to the squared intensity
I 2(r , t) = |E(r , t)|4 are coherently controllable even after time averaging (integration), as we
have argued earlier [16, 62]. Note the distributions measured in nonlinear optical experiments
with the detection by the photoemission electron microscope (PEEM) [19]–[21], [63] and in
the fluorescence upconversion experiments [11] can be modeled as such nonlinear processes
that yield distributions〈I n(r)〉 =

∫
∞

−∞
I n(r , t)dt/T , wheren> 2. Inspired by this, we will also

consider below the coherent control of the two-photon process averaged intensity〈I 2(r)〉.
To establish the controlled nanofocusing and elucidate the role of the polarization pulse

shaping, we start by comparing two pulses A and B. As we see from figure4, these pulses
are very different, including their amplitude, phase and polarization. Note that both the pulses
contain significant components of circularity indicated by green–blue colors, which suggests the
importance of the polarization modulation. The results of computations using these two pulses
are shown in figure5. Note that the excitation pulses used in the computations have not been
specially normalized. Thus only the distribution of the intensities is meaningful but not their
absolute magnitude that depends on the arbitrary excitation pulse power.

We first investigate precisely how one can address the optical excitation of a given nanosite
at a plasmonic nanostructure using the excitation pulses as found from the time-reversal method.
The results for the local field intensity distributions for the present nanostructure, targeting sites
A and B, are shown in figures5(a) and (b). In these panels, for each excitation pulse, the spatial
distribution of the local field intensity is displayed for the moment of time when this local
intensity acquires its global (highest) maximum. The most important conclusion that one can
draw from comparing these panels is that for each pulse this global maximum corresponds to
the maximum concentration of the optical energy at the corresponding targeted nanosite A or
B. This obtained spatial resolution is as good as 4 nm, which is determined by the spatial size

New Journal of Physics 10 (2008) 025031 (http://www.njp.org/)

http://www.njp.org/


16

10
20

30
10

20
30

0

10
20

30
10

20
30

0

0 100 200 300
0

2 × 103

1 × 103

I

t (fs)

  B(7,16)  

0 100 200 300
0

1 ×104

2 ×104

I

t (fs)

  A(11,22)  

10
20 30

10
2030

0

  B(7,16) 

z                 x

2 × 104

4 × 104

〈 I 2〉

10
20

30
10

20
30

0

  A(11,22)  

2 × 106

z                 x

4 × 106

〈 I 2〉
(e) (f)

  B(7,16) 
  A(11,22) 

2 × 104 2 × 103

1000

t = 229 fs t = 226 fs

z                 x                  x

(a) (b)

(c) (d)

I I

z

Figure 5. Calculation results demonstrating time-reversal coherent control
on the nanoscale. Panels (a) and (b) display distributions of the local field
intensity at the surface of the metal nanostructure for the moments of time
t indicated when the intensities at the targeted sites reaches their maxima.
The fields are excited by the pulses obtained for targeted sites A and B using
the corresponding pulses indicated in figure4. Panels (c) and (d) show temporal
dependence of the local field intensityI (r , t) = |E(r , t)|2 computed for targeted
points A and B, respectively. The arrows show the target timeT = 228 fs. Panels
(e) and (f) are similar to (a) and (b), correspondingly, but show the time-averaged
square intensity〈I 2(r)〉.

of inhomogeneities of the underlying plasmonic metal nanosystem. It is very important that this
localization occurs not only at the desired nanometre-scale location but also very close to the
targeted time that in our case ist = 228 fs. Thus the full shaping of femtosecond pulses by time
reversal is an efficient method of controlling the spatio-temporal localization of energy at the
femtosecond–nanometre scale.

Let us turn to the temporal dynamics of the intensity of the nanoscale local fields at the
targeted sites A and B, which is shown in figures5(c) and (d). As we can see, in each of these
panels there is a sharp spike of the local fields very close to the target time of 228 fs. The
duration of this spike is close to that of the initial dipole pulse, i.e. 12 fs. This shows a trend
to the reproduction of the initial excitation state due to the evolution of the time-reversed SP
packet induced by the shaped pulses. There is also a pedestal that shows that this reproduction
is not precise, which is expected due to the fact that the time reversal is incomplete: only the
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far-zone field propagating in one direction (along they-axis) is reversed. Nevertheless, as the
discussion in the previous paragraph shows, this initial excitation-state reproduction is sufficient
to guarantee that the targeted site develops the global maximum (in time and space) of the local
field intensity. Interestingly enough, the trend to reproduce the initial excitation state is also
witnessed by almost symmetric (with respect to the maximum pointst ≈ 228 fs) shapes of the
waveforms, which occur in spite of the very asymmetric shapes of the excitation waveforms (cf
figure4).

Apart from the ultrafast dynamics of the nanolocalized optical fields discussed above in
conjunction with figure5(a)–(d), there is a great interest in the time-integrated or averaged
distributions, in particular, the mean squared intensity〈I 2(r)〉. This quantity defines the
nanoscale spatial distribution of the incoherent two-photon processes. In some approximations,
the spatial distribution of the two-photon electron emission recorded by PEEM [19]–[21], [63]
is determined by〈I 2(r)〉. In figure5(e) and (f), we test such a concentration for the A and B
sites. As clearly follows from this figure, in both cases, there are leading peaks at the targeted
sites. Thus, the two-photon excitation, even after the time averaging, can be concentrated at
desired sites using coherent control by the time-reversed shaped pulses.

4.6. Discussion of ultrafast coherent control by time reversal

The spatio-temporal control of the optical excitation of a nanosystem on a nanometre–
femtosecond scale is one of the most important and fundamental problems of nanoplasmonics
and nanotechnology. In the conventional microelectronics, this problem is solved using metal
(currently, copper) wire interconnects. However, for optical frequencies and nanometre spatial
dimensions, this approach cannot work because of the excitation delocalization due to the
strong interaction at the nanoscale distances. We have proposed a principally different approach
to this formidable problem that is based on the idea of coherent control that is a directed
interference between a system’s eigenmodes [15]. In this approach, one does not attempt a
localized excitation of a plasmonic nanosystem: generally, such an excitation will delocalize
over the entire system during femtosecond time intervals. On the contrary, one excites a wide-
band packet of SP excitations in the entire system. The phases, amplitudes, and polarizations
of these modes are forced by the excitation pulse in such a way that at the required moment of
time and at the targeted nanosite, these modes’ oscillations add in phase while at the other sites
and different moments of time they interfere destructively.

This idea allows a targeted ultrafast (femtosecond-scale) and localized (nanometre-
scale) excitation but is completely dependent on the possibility of finding the corresponding
controlling pulse that is, in a general case, fully modulated by amplitude, phase and polarization.
Finding such a pulse to target a specific location in a nanosystem is a formidable problem that,
in principle, could be solved by using adaptive algorithms [48, 49]. However, the solutions
obtained by this method are computationally taxing, can be very complicated even for simple
systems [20] and are difficult to interpret.

In this section, we have discussed a principally different approach [22] based on the idea
of time reversal. Nanoplasmonic systems of noble metals in the optical range of frequencies
have high resonant quality (low losses) and therefore, in principle, are almost time reversible.
However, a significant problem is that the evanescent (near-zone) fields are vanishingly
(exponentially) small in the far zone and therefore cannot be reversed. An original idea to
overcome this difficulty in acoustics and microwave electromagnetics was to put a system into
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a reverberating box to increase the time of the wave interaction with the system to transfer the
information from the near- to far-field zone [56]–[58]. Putting a nanosystem into such a box is,
of course, impractical.

Our present idea is that a plasmonic nanosystem itself, due to its high resonant quality, traps
and sustains the optical oscillations for a relatively long time (∼100 fs). The oscillating optical
fields continuously interact with the plasmonic nanostructure, transferring the information from
the evanescent (near-zone) fields to radiative (far-zone) fields where it is encoded into the
field temporal dynamics. Direct evidence of such a transfer is illustrated in figure4, where
the waveforms emitted by the locally excited nanosystem are long, reverberating, andhighly
specificfor the position of the initial excitation.

This local excitation has been carried out in our theory by placing a dipole close to the
targeted nanosite and giving this pulse a short (12 fs) Gaussian-shaped pulse of oscillations
at a near-infrared frequency that is within the resonant spectrum of the nanostructure. The
orientation of this dipole was chosen either along thex- or z-direction, with no significant
differences found between these two orientations; thex-orientation was chosen to present the
results.

Such an approach can, in principle, be implemented not only theoretically but also
experimentally by positioning a fluorescent emitter (for example, a semiconductor nanocrystal
quantum dot) at the desired site of the nanosystem and exciting it externally with an optical
pulse in the ultraviolet that does not by itself cause a resonant response of the nanosystem. Such
quantum dots are photochemically stable emitters, and accumulating statistics over many pulses
one can find the field of the pulse in the far zone. The required time-reversal can then be effected
using the standard pulse-shaping techniques.

The proposed method of time-reversal coherent control is efficient and noninvasive:
this control is carried out from the far zone using the nanoplasmonic system itself as an
optical nanoantenna without any additional metal parts. Another potential approach of coupling
nanosystems to the far-zone fields could consist of the use of the so-called magnifying
superlenses (‘perfect lenses’) [64], hyperlenses [14], or adiabatic concentrators [10] including
those based on metal-wire arrays [43, 44]. In all these cases, a massive amount of metal would
be brought into the vicinity of the plasmonic nanosystem, which will cause correspondingly
massive perturbations of the spectrum and SP eigenmodes, losses, etc. With respect to all these
methods, which together can be called nano-waveguide approaches, our proposed time-reversal
coherent control has the great potential advantages of being wireless, noninvasive, fast, and
having a high spatial resolution on the nanoscale, unattainable by other approaches.

Now let us discuss potential applications of the targeted excitation of a nanosystem with
shaped optical pulses, which may be many. One of the first and, potentially most important,
applications is that to ultrafast (with frequencies from terahertz to optical) computations on
the nanoscale. As follows from the results presented above in section4.5, it is possible to
supply optical energy (which can be transformed on-site into electrical energy using optical
rectification) and controlling pulses to plasmonic nanocircuits or electronic nanochips with
optical plasmonic antennas. Another class of applications is in time-resolved local spectroscopy
with nanoscale resolution, or directed photochemistry on the nanoscale. Related are applications
to optical recording and retrieval of information with nanoscale density of bits. Yet another
application may be the creation of nanoscale sources of ultrashort electron-beam pulses, which
could find their own application in the future. Many other potential applications may be possible
that is hard even to foresee at this time.
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