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From the fundamental principle of causality we show that epsilon-near-zero (ENZ) materials with a very
low (asymptotically zero) intrinsic dielectric loss do necessarily possess a very low (asymptotically zero)
group velocity of electromagnetic wave propagation. This leads to the loss function being singular and
causes high nonradiative damping of the optical resonators and emitters (plasmonic nanoparticles, quantum
dots, chromophore molecules) embedded into them or placed at their surfaces. Rough ENZ surfaces do not
exhibit hot spots of local fields suggesting that surface modes are overdamped. Reflectors and waveguides
also show very large losses both for realistic and idealized ENZ materials.
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Recently, materials at frequencies ω close to the bulk
plasmon frequency ωP, which are characterized by the
dielectric permittivity ε being small enough, jεj ≪ 1, and
are usually referred to as epsilon-near-zero (ENZ) materi-
als, have attracted a great deal of attention [1–12]. Their
optical properties are expected to be quite remarkable: ENZ
materials should totally reflect light at all angles, the phase
velocity of light in these materials tends to infinity and,
correspondingly, the light wave carries almost constant
phase, the density of photonic states in ENZ materials
diverges at ω → ωP, a waveguide formed inside an ENZ
material can confine light at deep subwavelength dimen-
sions, there are no reflections even at sharp bands in these
materials, and the unavoidable roughness of the waveguide
walls does not significantly spoil the waveguiding by ENZ
materials. As in many other cases in nano optics [13],
dielectric losses present a significant problem, deteriorating
these unique properties and limiting the useful applications
of ENZ materials. Several approaches have been proposed
to mitigate these unwanted effects of optical loss: new
conducting oxide and nitride materials, in particular,
indium tin oxide (ITO), bear the promise of a significant
reduction of optical losses [14,15]. Another proposed
approach is based on loss compensation by gain [10].
The most radical way to eliminate the loss is using of an
all-dielectric metamaterial at optical frequencies whose
effective permittivity is near zero and whose losses are
extremely low [16].
The goal of this Letter is to establish the fundamental

limitations thatcausalityanddielectric losses imposeonENZ
materials.We show that a fundamental causality requirement
for a perfectly transparent ENZmaterial (where ε ¼ ε0 þ iε00

possesses a small real part, 1 ≫ jReεj → 0 and a negligible
imaginary part ε00 ¼ Imε ¼ 0) leads to a vanishing group
velocity,vg → 0.Thus, sucha“perfect”ENZmaterial cannot
transmit energy or information. Also, the establishment time
of the stationary optical regime diverges ∝ v−1g → ∞. (Note

that it has been understood that in “perfect lens” systems,
where ε00 → 0 and ε0 → −1, the asymptotically infinite
establishment time has already been found earlier [17,18].)
Therefore, any dielectric metamaterials emulating ε0 → 0
must be diffractive, i.e., not true metamaterials that transmit
andabsorb lightbut thatdonot scatterordiffract it.Moreover,
we show that the introduction of even very small losses
drastically degrades the expected remarkable properties
of idealized ENZmaterials. Adding gain to reduce ε00 would
be no radical solution either because gain affects also ε0,
leaving the causality limitations in place [19]. Also, the
energy loss functionL ¼ −Imðε−1Þ is singular for a low-loss
ENZ material, which causes strong damping of embedded
nanosystems. In the optical (near-infrared to visible)
range, real ENZ materials such as ITO do not actually show
the remarkable manifestations of ENZ behavior due to the
losses.
Because we are interested in the most fundamental

properties of ENZ materials, we consider such a material
as a uniform and isotropic infinite medium (natural or
metamaterial [20]). We also assume that the dielectric
response of the ENZ material is local (i.e., there is no
spatial dispersion), which ensures that the results are also
applicable to micro- and nanostructures made of it through
the use of the Maxwell boundary conditions.
We start first with an idealized case of a material that is

lossless at the observation frequency ω, i.e., ε00ðωÞ ¼ 0. We
assume that it is also lossless in the infinitesimal vicinity of
ω, which we reformulate as the condition dε00ðωÞ=dω ¼ 0.
We will also assume that this material is not magnetic
(which is usual at optical frequencies [21]). Under these
conditions, the fundamental causality principle leads to an
exact dispersion relation [19]
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where c is speed of light, vp ¼ c=
ffiffiffiffiffiffiffiffiffiffiffi
ε0ðωÞp

is the phase

velocity, and vg ¼ c=ðd=dωÞω ffiffiffiffiffiffiffiffiffiffiffi
ε0ðωÞp

is the group veloc-
ity. From this, we can immediately find an exact dispersion
relation for the group velocity as
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Because of the requirement of stability, ε00 ≥ 0.
Consequently, vg ≤ c

ffiffiffiffiffiffiffiffiffiffiffi
ε0ðωÞp

, and vg → 0 for ε0ðωÞ → 0.
Thus, a lossless ENZ material in the limit ε0ðωÞ ¼ 0 does
not transport electromagnetic energy. As a corollary, the
establishment time τs of the stationary regime diverges,
τs ∼ a=vg → ∞, where a is the characteristic size, and the
ENZ media may have high (albeit slow) optical non-
linearities (cf. Ref. [22]). Note that Eq. (2) is an exact
local property of lossless ENZ materials, and it is not
affected by their micro- or nanostructuring.
In the experiment of Ref. [16], the medium designed to

be a lossless ENZ metamaterial is, in reality, a diffractive
medium—a photonic crystal [23,24] where the linear
photon momentum is within the first Brillouin zone, where
the diffraction does not show itself. Another class of
pertinent systems are parallel-plate waveguides. These
are not true continuous media but emulate the properties
of two-dimensional ENZ media [2–4], which are isotropic
in the plane of the waveguide. They may be designed for
microwave frequencies where the propagation losses are
relatively low but the loss function is large (see the next
paragraph), and they cannot be nanostructured.
Now, let us turn to ENZmedia with a small but finite loss

at the observation frequency, 1 ≫ ε00ðωÞ > 0. More pre-
cisely, we will call it an ENZ material if the real part of the
permittivity is still the smallest part of it and the loss is
small enough, which can be stated as 1 ≫ ε00 ≫ jε0j. It is
well known that the energy loss of charged particles in a
medium is proportional to the energy-loss function (see,
e.g., Ref. [25], Sec. III B) LðωÞ ¼ −Im½ε−1ðωÞ�. For an
ENZ material with a very low loss, this loss function
diverges:

LðωÞ ≈ 1=ε00ðωÞ → ∞; for ε00ðωÞ → 0: ð3Þ
This diverging singularity of the loss function for ENZ
materials will lead to anomalously high energy losses of
nanophotonic systems (e.g., plasmonic nanoparticles or
chromophores) at the surfaces of or embedded into such
materials. Such a paradoxical behavior—singularly high loss
in the limit of vanishing internal dissipation (ε00 → 0)—is due
to the singularly low group velocity in this case, cf. Eq. (2),
which is also related to the excitation of bulk plasmons.
In sharp contrast, for all other types of materials,

including dielectrics (ε0 > 0) and metals (ε0 < 0), where
ε00 ≪ jε0j, the loss function vanishes for negligible internal
dissipation:

LðωÞ ¼ ε00ðωÞ
ε0ðωÞ2 þ ε00ðωÞ2 ≈

ε00

ε0ðωÞ2 → 0; for ε00ðωÞ → 0:

ð4Þ

Note that this regime is of especial interest for a case of
ε00 ≪ jε0j ≪ 1, which mimics the ENZ behavior and is
realistic in the microwave frequency range [26,27].
The results of Eqs. (3) and (4) are easy to understand.

The energy loss density per unit time _Q for a given electric
field E oscillating inside a medium is given by a universal
expression [21]: _Q ¼ ðω=4πÞε00jEj2. (This can also be
equivalently written in terms of the real part of the
conductivity σ0 as _Q ¼ σ0jEj2.) Obviously, _Q → 0 for
low internal dissipation, ε00→0 (or, equivalently, σ0→0).
The energy loss per unit propagation length of a wave
inside the medium is determined by the imaginary
part of the wave vector Imk ¼ ðω=cÞIm ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε0 þ iε00
p

→
ðω= ffiffiffi

2
p

cÞ
ffiffiffiffiffi
ε00

p
→ 0. In contrast, for given charges oscillat-

ing inside the medium, E ∝ ε−1, and _Q ∝ 1=ε00 → ∞ for
ENZ media where ε00 ≫ jε0j → 0.
The behavior of these three measures of losses in ENZ

media with vanishing internal dissipation is fundamentally
different: ∝ ε00−1 → ∞, ∝ ε00 → 0, and ∝

ffiffiffiffiffi
ε00

p
→ 0. This

implies a singularity of the ENZ properties, which, as we
have already indicated above in conjunction with Eq. (2), is
related to vg → 0. Physically, this prevents energy removal
from an excitation volume and leads to singularly increased
fields, which brings about the high loss function. This can
be useful to make efficient “perfect” thin absorbers [28,29].
Noteworthy, there is also a degeneracy in the mathematical
sense for ε ¼ 0 because the coefficient at one of the highest
derivatives in the wave-propagation equation (obtained
from the Maxwell equations) turns to zero.
As an example of the singular behavior of ENZ materi-

als, the simplest case is a semi-infinite slab where the
reflection coefficient R is given by the familiar Fresnel
formula [we will consider, for certainty, p (or TM)
polarization]. It is expected that a good ENZ material will
be highly reflective (R ≈ 1) for any non-normal incidence.
In reality, as the results of Fig. 1(a) show, even for an
unrealistically small loss, εðωÞ ¼ 0.03þ i10−3, there is a
low reflection for an incidence angle θ ≤ 12° with a
pronounced Brewster-angle minimum at θ ≈ 10°. As a
realistic example, in Fig. 1(a), we also plot the results
for ITO [30], where for a carrier concentration
n ¼ 6.3 × 1020 cm−3 at the telecommunication vacuum
wavelength λ ¼ 1.55 μm, the ENZ conditions are attained:
ε ¼ 0.þ i0.57. Even for a smooth surface, as Fig. 1(a)
shows, the reflection is far from perfect: R ≤ 30% for
θ ≤ 60°. Introduction of a ∼50-nm roughness, as the
numerical results obtained by finite difference time domain
(FDTD) calculations (Lumerical) show, further decreases R
by a factor of ∼0.5. This low reflectivity is very far from
what is conventionally expected for an ENZ material. It is
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physically related to the excitation of bulk plasmons: the
ENZ materials are those at the bulk plasmon frequency ωP,
where ε0ðωPÞ ¼ 0. Note that large losses at ω ≈ ωP are
known and actively exploited in plasma physics for the
electromagnetic heating of plasmas [31].
To obtain more insight into the nano-optical properties of

ENZ media in comparison with conventional plasmonic
metals, we display in Fig. 2 the local optical field intensity
E2ðrÞ at rough (random Gaussian roughness, root-mean
square (RMS) 50 nm) surfaces of ITO (ε ¼ 0.þ i0.57) and
gold [32]. As one can see, the gold surface shows a
pronounced picture of nanoscopic hot spots with the local
fields enhanced by a factor of up to ∼103 as expected for a
rough plasmonic metal [13,33,34]. In a sharp contrast, the
ENZ surface of the same geometry does not show such hot
spots. This is certainly related to the anomalous damping of
the plasmonic resonances due to the singularly enhanced
loss function LðωÞ → ∞—see Eq. (3) and its discussion
above. The hot spots at the rough surface are damped due to
the anomalous loss caused by the enhanced energy flow
into the ENZ.
Now, let us consider another important system: a thin

film of ENZ material where the reflection and transmission
are also expected to have interesting properties (cf. Ref. [1]
and references therein). Such a film with smooth surfaces
allows for an exact analytical solution (see, e.g., Ref. [35]).
The actual analytical results, which are illustrated in
Fig. 1(b) for a 0.5 mm ITO film, turn out to be not

remarkable: the reflection coefficient is, for most angles,
not very high, R ∼ 10%–40%, and the transmission is
rather low due to the losses, typically T ≲ 1%–15%. We
treat a similar thin film with a nanoscopic roughness
numerically using the Lumerical package. For the sake of
control and testing, we applied this package also to smooth
surfaces, obtaining an excellent agreement with the ana-
lytical formulas—cf. Fig. 1(b). For a nanofilm with rough
surfaces [a Gaussian random roughness with RMS size
δ ¼ 50 nm], the reflection is further reduced, suggesting
the dominating role of loss. In fact, the roughness helps to
relax the momentum conservation converting the electro-
magnetic energy into nonpropagating bulk plasmons.
It is widely discussed in the literature that ENZ materials

bear high promise for nanoscale waveguiding, which is
suggested by the expected strong reflection from ENZ
surfaces at all angles [1,3,4,6,8,36–41]. Propagation in the
plane nanogap filled by a dielectric material between two
semi-infinite slabs made of an ENZ material, which we will
call an ENZ-I-ENZ waveguide, is amenable to an exact
analytical solution. The corresponding dispersion relation is
an analytical continuation of the known relation for metal-
insulator-metal waveguides [42] and is valid for any values
of the dielectric functions. For a symmetric waveguidewhere
the ENZ material with dielectric permittivity ε surrounds a
nanoscopic planar dielectric waveguide with thickness d and
permittivity εd, this dispersion relation for the lower-loss
mode of interest, which is a symmetric mode, is

tanh

�
1

2
k0dεduðεdÞ

�
¼ −

uðεÞ
uðεdÞ

; ð5Þ

where the function uðϵÞ is defined as uðϵÞ ¼ ð1=ϵÞ
½ðk2=k20Þ − ϵ�1=2; k is the modal wave vector and k0 ¼
ω=c is the vacuum wave vector.
For a plasmonic system, where ε0 < −εd, the symmetric

mode is highly confined, k ≫ k0, and Eq. (5) simplifies:

k ¼ 1

d
ln
ε − εd
εþ εd

≈ −
2

d
εd
ε
; ð6Þ
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FIG. 1. Reflection R and transmission T coefficients of ENZ
systems as functions of the incidence angle θ. (a) Reflection from
a planar surface of a semi-infinite ENZ material. Analytical
Fresnel reflection coefficient R for smooth surfaces of ITO
(ε ¼ 0.þ i0.57) and an idealized low-loss ENZ material
(ε ¼ 0.03þ i0.001). The numerical FDTD reflection coefficient
R is displayed for ITO smooth and rough (RMS roughness of
50 nm) surfaces. (b) Analytical and numerical R and T for a
0.5 mm film of ITO (ε ¼ 0.þ i0.57).
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FIG. 2. Local field intensity E2ðrÞ at rough (random Gaussian
roughness, MRS 50 nm) surfaces of ITO (ε ¼ 0.þ i0.57) and
gold (dielectric data are adapted from Ref. [32]). The excitation
radiation is p polarized, incident at 45°. The color scale of the
intensity (relative units) is indicated to the right of the panels.
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where the approximation is valid in a deep plasmonic
region, ε0 ≪ −εd. Obviously, k → ∞ for d → 0, which
describes a highly nanoconfined guided mode.
In sharp contrast, for an ENZ material, k ≪ k0, and

Eq. (5) simplifies to

k ≈ k0

�
εþ 1

2
ðk0dεÞ2

�
1=2

≈ k0
ffiffiffi
ε

p
: ð7Þ

Thus, the dispersion of the ENZ nanowaveguide is close to
that of the embedding ENZ medium, which indicates a very
weak mode confinement. In fact, k → 0 for jεj → 0, which
is a characteristic of ENZ materials.
We consider numerically a parallel plate ENZ-I-ENZ

waveguide whose core is made of a d ¼ 500 nm dielectric
plate of SiO2, surrounded by two semi-infinite ENZ
slabs. These are made of ITO at λ ¼ 1.55 μm, where
ε ¼ 0.þ i0.57. In Fig. 3(a), the intensity of the symmetric
mode propagating in such an ENZ-I-ENZ waveguide is
displayed as a function of the propagation coordinate by a
solid red line. As one can see, the real ENZ material makes
a very poor waveguide: the modal propagation length is
only ≈0.3 μm. In comparison, for the same wavelength and
geometry, replacing the ENZ material by gold (using the

dielectric data of Ref. [32]) leads to a modal propagation
length of 51 μm. Thus, the real ENZ material (ITO) of
relatively low loss [14,15] in the optical range is indeed
much inferior to real metals as a waveguiding material. As
we have discussed above in conjunction with Eq. (7), this is
due to the weak confinement: the energy leaks into the ENZ
material where it is absorbed.
For a rectangular SiO2 waveguide of 500 × 500 nm

cross section in the ENZ ITO, we used the Lumerical
package to describe the mode propagation. The results for
smooth surfaces, rough surfaces (δ ¼ 50 nm), and very
rough surfaces (δ ¼ 100 nm) are shown in Fig. 3(a) by
dashed lines. As one can see, the propagation length in
the square waveguide is indeed even shorter than in the
parallel-plate one but not by very much. The roughness
shortens the propagation length somewhat by increasing
the coupling to bulk plasmons.
Given the high propagation losses of the waveguides

based on ITO as a realistic ENZ material, one may ask how
much the loss, i.e., ε00, for a waveguiding ENZ material
should be reduced to make it competitive with the real
metals in the optical spectral region. To answer this
question, we plot in Fig. 3(b) the results for the same
waveguide geometry calculated for an idealized, extremely
low-loss ENZ material where the dielectric permittivity is
set to be ε ¼ 0.þ i0.05. In this idealized case, the wave-
guide modal propagation length is, indeed, increased but
still it is in the≲0.8 μm range, i.e., much inferior to gold as
a plasmonic waveguiding material.
To conclude, the fundamental principle of causality [as

given by Eq. (1)] dictates that any ENZ material with a very
low (asymptotically zero) loss at the observation frequency
has necessarily an asymptotically zero group velocity at
that frequency. Physically, this leads to enhanced scattering
and dissipative losses as given by the diverging energy-loss
function—cf. Eq. (3). Paradoxically, a reduction of the
intrinsic loss, ε00 → 0, leads to an increase of the energy-
loss function and a further deterioration of the performance
of reflectors and waveguides built from ENZ materials.
Both analytically and numerically we have shown that a
realistic ENZ material, ITO, at the bulk plasma frequency
causes high reflection losses and propagation losses. The
singular loss function is also responsible for the anoma-
lously strong optical damping of resonant systems (plas-
monic nanoparticles, dye molecules, quantum dots, etc.)
embedded into or positioned at the surfaces of ENZ
materials. In contrast to plasmonic metals, there are no
pronounced hot spots of local fields at rough ENZ surfaces.
Structured dielectric media with practically zero loss in the
optical region cannot function as true ENZ materials
because of the singular response (3); they necessarily are
diffractive photonic crystals, and not refractive effective
media. Obviously, this anomalous loss of ENZ materials
can be gainfully used in energy absorbers, which begets
an analogy with the heating of plasmas at the plasma
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FIG. 3. Intensity of a wave propagating in an ENZ-I-ENZ
waveguide with a 500-nm-thick (in the z direction) SiO2 dielectric
as a waveguide core. The intensity is shown is as function of the
propagation length (in the x direction). The analytical results are
for a planar waveguide (infinite in the xy direction). The numerical
results are calculated for a 500 × 500 nm rectangular-cross-section
SiO2 waveguide. (a) The ENZ material of the waveguide is ITO at
a vacuum wavelength of 1.55 μm where ε ¼ 0.þ i0.57. (b) The
ENZ material is idealized with a very low loss, ε ¼ 0.þ i0.05.
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frequency with charged particles or electromagnetic waves.
These losses and singularities are fundamental, local
properties of ENZ media, which cannot be eliminated by
micro- or nanostructuring.
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