Trends in Nanoplasmonics: Citius, Minimius, Fortius!

Mark I. Stockman
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
Collaborators:
1. David J. Bergman, Department of Physics, Tel Aviv University, Israel
2. Sophie Brasselet, Institut Fresnel, Marseilles, France
3. Paul Corkum, Femtosecond Science Program, National Research Council of Canada
4. Maxim Durach, Georgia State University, Atlanta, GA 30340, USA
5. Sergey V. Faleev, Sandia National Laboratories, Livermore, CA, USA
6. Harald Giessen, University of Stuttgart, Germany
7. Dmitry Gramotnev, Queensland University of Technology, Brisbane, Qld 4001, Australia
8. Misha Ivanov, Femtosecond Science Program, National Research Council of Canada
9. Ulf Kleineberg, Ludwig Maximilian University, Munich, Germany
10. Victor Klimov, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
11. Matthias Kling, Max Plank Institute for Quantum Optics, Garching, Germany
12. Katrin Kneipp, Technical University Copenhagen, Denmark
13. Takayoshi Kobayashi, University of Tokyo, Japan
14. Ferenc Krausz, Max Plank Institute for Quantum Optics, Garching, Germany
15. Ivan Larkin, Georgia State University, Atlanta, GA 30340, USA
16. Kuiru Li, Georgia State University, Atlanta, GA 30340, USA
17. Keith Nelson, MIT, Boston, USA
18. Peter Nordlander, Rice University, Houston, Texas, USA
19. Hrvoje Petek, University of Pittsburgh, USA
20. Anastasia Rusina, Georgia State University, Atlanta, GA 30340, USA
21. Igor Tsukerman, University of Akron, OH 44325, USA
22. Nikolay Zheludev, University of Southampton, UK
23. Joseph Zyss, Ecole Normale Supérieure de Cachan, 94235 Cachan, France
CONTENTS

• Introduction: Plasmonics and Nanoconcentration of Optical Energy; Applications of Nanoplastmonics
• Plasmonic Hot Spots
• Plasmonic Enhancement and Ultrafast Plasmonics
• Adiabatic Nanofocusing and SPIDER
• Nanolenses
• Spaser as an Ultrafast Quantum Generator and Nanoamplifier
• Conclusions
• Bonus: Ultrafast Nanoscale Coherent Control
• Bonus: Attosecond Plasmonic Field Nanoscope
Nanoplasmonics in a nano-nutshell

Concentration of optical energy on the nanoscale

Photon

Surface Plasmon

Skin depth \(\sim 25 \text{ nm}\)

Size \(\sim 10 \text{ nm}\)

Trends in Nanoplasmonics:
Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman

E-mail: mstockman@gsu.edu
Nanoplasmonic colors are very bright. Scattering and absorption of light by them are very strong. This is due to the fact that all of the millions of electrons move in unison in plasmonic oscillations.

Nanoplasmonic colors are also eternal: metal nanoparticles are stable in glass: they do not bleach and do not blink. Gold is stable under biological conditions and is not toxic in vivo.

Colors of Silver Nanocrystals and Gold Nanoshapes

Scanning electron microscopy

Dark field optical microscopy

SEM-ESB: Energy Selective Backscattered

D. A. Pawlak et al., Institute of Electronic Materials Technology, Warsaw, Poland

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
The magnificent nanoplasmonic colors: The windows of La Sainte-Chapelle, Paris

Applications of Nanoplasmonics:

2. Near-filed scanning microscopy (or, nanoscopy): NSOM (SNOM)

4. Photo- and chemically stable labels and probes for biomedical research and medicine

5. Nanoplasmonic-based immunoassays and tests. Home pregnancy test (dominating the market), PSA test (clinic), troponin heart-attack test, and HIV tests (in trials)

6. Near perspective: Generation of EUV and XUV pulses

CONTENTS

• Introduction: Plasmonics and Nanoconcentration of Optical Energy; Applications of Nanoplasmonics

• Plasmonic Hot Spots

• Plasmonic Enhancement and Ultrafast Plasmonics

• Adiabatic Nanofocusing and SPIDER

• Nanolenses

• Spaser as an Ultrafast Quantum Generator and Nanoamplifier

• Conclusions

• Bonus: Ultrafast Nanoscale Coherent Control

• Bonus: Attosecond Plasmonic Field Nanoscope

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
Plasmonic Hot Spots 15th Anniversary

- M. Hentschel et al., Nano Lett. 10, 2721 (2010)

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu

CONTENTS

• Introduction: Plasmonics and Nanoconcentration of Optical Energy; Applications of Nanoplasmonics
• Plasmonic Hot Spots
• Plasmonic Enhancement and Ultrafast Plasmonics
• Adiabatic Nanofocusing and SPIDER
• Nanolenses
• Spaser as an Ultrafast Quantum Generator and Nanoamplifier
• Conclusions
• Bonus: Ultrafast Nanoscale Coherent Control
• Bonus: Attosecond Plasmonic Field Nanoscope
Enhancement factors for small nanoparticles (size $R < l_s \sim 25$ nm)

Plasmonic quality factor: $Q = \frac{-\text{Re } \varepsilon_m}{\text{Im } \varepsilon_m} \sim 10 - 100$

Radiative rate enhancement for dipole mode frequency: $\sim Q^2$

Excitation rate enhancement: $\sim Q^2$

SERS enhancement: $\sim Q^4$

The above-listed enhancement factors do not depend on size R

Emission rate of SPs into a mode: $\propto \frac{Q}{R^3}$

This with respect to free photons: $\sim \frac{\lambda^3 Q}{R^3}$ (Purcell factor)

This enhancement factor is *inversely* proportional to R^3

This is of fundamental importance for spasers (plasmonic nanolasers)
Nanoplasmonics is intrinsically ultrafast:

- Surface plasmon relaxation times are in ~10-100 fs range.
- Spectrally, surface plasmon resonances in complex systems occupy a very wide frequency band; for gold and silver:
 \[\Delta \omega \approx \frac{\omega_p}{\sqrt{2}} \approx 4 \text{ eV} \]
- Including aluminum with plasmon responses in the ultraviolet, this spectral width increases to ~10 eV.
- Best area for plasmonics

Corresponding rise time of plasmonic responses ~ 100 as
Localized SP hot spots and SPPs coexist in space and time on nanostructured surfaces

PEEM Image as a Function of Delay (250 as per frame)

30 femtoseconds from life of a nanoplasmonic system

Localized SP hot spots are deeply subwavelength as seen in PEEM (photoemission electron microscope)

Trends in Nanoplasmonics: Faster, Smaller, Stronger!
Constructive control by the second pulse
Destructive control by the second pulse
No control pulse (free induction decay)

Trends in Nanoplasmonics:
Faster, Smaller, Stronger!
CONTENTS

• Introduction: Plasmonics and Nanoconcentration of Optical Energy; Applications of Nanoplasmonics
• Plasmonic Hot Spots
• Plasmonic Enhancement and Ultrafast Plasmonics
• Adiabatic Nanofocusing and SPIDER
• Nanolenses
• Spaser as an Ultrafast Quantum Generator and Nanoamplifier
• Conclusions
• Bonus: Ultrafast Nanoscale Coherent Control
• Bonus: Attosecond Plasmonic Field Nanoscope
Adiabatic Compression

Field enhancement:

\[\sim \frac{L_s}{R} \quad \text{(for 2d compression), } L_s \approx 25 \text{ nm} \]

\[\sim \left(\frac{L_s}{R} \right)^{3/2} \quad \text{(for 3d compression)} \]

Nanowire Plasmon Excitation by Adiabatic Mode Transformation

Ewold Verhagen,* Marko Spasenović, Albert Polman, and L. (Kobus) Kuipers

FIG. 4 (color). (a) Secondary electron micrograph of a 2 μm long nanowire connected by tapered waveguide sections for input and output coupling. (b) Near-field amplitude of forward-propagating waves in the structure at \(\lambda = 1550 \) nm. The intensity transmission of the complete structure is 20 ± 6%.

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
Near-Field Localization in Plasmonic Superfocusing: A Nanoemitter on a Tip

Catalin C. Neacsu,†,* Samuel Berweger,†,* Robert L. Olmon,†,* Laxmikant V. Saraf,‡
Claus Ropers,* and Markus B. Raschke*†,*§

†Department of Chemistry, ‡Department of Electrical Engineering, §Department of Physics, University of Washington, Seattle, Washington 98195
Laboratory, Richland, Washington 99355
University of Göttingen, Germany

FIGURE 1. Grating coupling of surface plasmons on a tip. Overlay of SEM and optical far-field image of a Au tip with grating written by FIB for surface plasmon coupling of incident near-IR light from a Ti:Sapphire laser (spectrum shown). The grating with period $a_0 \sim 770$ nm is illuminated with polarization parallel with respect to the tip axis and an incident focus size of $\sim 8 \mu m$. The nonradiative SPP propagation leads to energy transfer and focusing and finally reemission near the tip apex with radius ≤ 15 nm.

FIGURE 2. Determination of tip emitter size. (a) Schematic of scanning the nanofocusing tip across a silicon step edge with radius 3 ± 1 nm. (b) Top view SEM image of step edge. The wall and lower terrace are on the right-hand side. The edge serves as a local scatterer of the optical near-field of the apex. (c) The optical signal of a lateral scan across the step edge provides a measure of the spatial field confinement and thus the emitter size at the apex. Solid black line: AFM topography of the step. Red circles: plasmonic edge-scattered light intensity of the apex. The optical intensity peaks at the step edge and displays a width of 22 ± 5 nm, demonstrating the near-field localization at the apex. Solid red: Signal obtained under direct illumination of the apex under otherwise identical conditions.
Trends in Nanoplasmonics:
Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer

Here decay of SPP is a useful effect!
CONTENTS

• Introduction: Plasmonics and Nanoconcentration of Optical Energy; Applications of Nanoplasmonics
• Plasmonic Hot Spots
• Plasmonic Enhancement and Ultrafast Plasmonics
• Adiabatic Nanofocusing and SPIDER
• Nanolenses
• Spaser as an Ultrafast Quantum Generator and Nanoamplifier
• Conclusions
• Bonus: Ultrafast Nanoscale Coherent Control
• Bonus: Attosecond Plasmonic Field Nanoscope
Gold Nanolenses Generated by Laser Ablation-Efficient Enhancing Structure for Surface Enhanced Raman Scattering Analytics and Sensing

Janina Kneipp,*†,†† Xiangting Li,§ Margaret Sherwood,† Ulrich Panne,† Harald Kneipp,† Mark I. Stockman,§ and Katrin Kneipp††

Different types of aggregates of gold nanospheres

Scale bar: 100 nm

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
CONTENTS

• Introduction: Plasmonics and Nanoconcentration of Optical Energy; Applications of Nanoplasmonics
• Plasmonic Hot Spots
• Plasmonic Enhancement and Ultrafast Plasmonics
• Adiabatic Nanofocusing and SPIDER
• Nanolenses
• Spaser as an Ultrafast Quantum Generator and Nanoamplifier
• Conclusions
• Bonus: Ultrafast Nanoscale Coherent Control
• Bonus: Attosecond Plasmonic Field Nanoscope
Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER)

Amplification and Stimulated Emission in Plasmonic systems:

Spaser is the ultimately smallest quantum nano-generator and nano-amplifier.

For small nanoparticles, radiative loss is negligible.

Spaser is quasistatic and fully scalable.

\[|d_{10}|^2 \frac{N_{QD} \Omega}{\hbar R^3 \Gamma} \geq 1 \]

Trends in Nanoplasmonics: Faster, Smaller, Stronger!
Stationary (CW) spaser regime

This quasilinear dependence $N_n(g)$ is a result of the very strong feedback in spaser due to the small modal volume

arXiv:0908.3559
Bandwidth ~ 10-100 THz

Very high resistance to ionizing radiation

Amplification in Spaser with a Saturable Absorber (1/3 of the gain chromophores)

Stationary pumping

This very high speed of the spaser is due to the small modal volume

Pulse pumping

Trends in Nanoplasmonics: Faster, Smaller, Stronger!
Demonstration of a spaser-based nanolaser

M. A. Noginov¹, G. Zhu¹, A. M. Belgrave¹, R. Bakker², V. M. Shalaev², E. E. Narimanov², S. Stout¹,³, E. Herz³, T. Suteewong³ & U. Wiesner³

Figure 1 | Spaser design. a, Diagram of the hybrid nanoparticle architecture (not to scale), indicating dye molecules throughout the silica shell. b, Transmission electron microscope image of Au core. c, Scanning electron microscope image of Au/silica/dye core–shell nanoparticles. d, Spaser mode (in false colour), with \(\lambda \) = circles represent the 14-nm strength colour scheme is
Figure 2 | Spectroscopic results. Normalized extinction (1), excitation (2), spontaneous emission (3), and stimulated emission (4) spectra of Au/silica/dye nanoparticles. The peak extinction cross-section of the nanoparticles is 1.1×10^{-12} cm2. The emission and excitation spectra were measured in a spectrofluorometer at low fluence.

Figure 4 | Stimulated emission. a, Main panel, stimulated emission spectra of the nanoparticle sample pumped with 22.5 mJ (1), 9 mJ (2), 4.5 mJ (3), 2 mJ (4) and 1.25 mJ (5) 5-ns optical parametric oscillator pulses at $\lambda = 488$ nm. b, Main panel, corresponding input–output curve (lower axis, total launched pumping energy; upper axis, absorbed pumping energy per nanoparticle); for most experimental points, ~5% error bars (determined by the noise of the photodetector and the instability of the pumping laser) do not exceed the size of the symbol. Inset of a, stimulated emission spectrum at more than 100-fold dilution of the sample. Inset of b, the ratio of the stimulated emission intensity (integrated between 526 nm and 537 nm) to the spontaneous emission background (integrated at <526 nm and >537 nm).

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
Trends in Nanoplasmonics:
Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
Plasmon lasers at deep subwavelength scale

Rupert F. Oulton, Volker J. Sorger, Thomas Zentgraf, Ren-Min Ma, Christopher Gladden, Lun Dai, Guy Bartal & Xiang Zhang

Trends in Nanoplasmonics: Faster, Smaller, Stronger!
Room-temperature sub-diffraction-limited plasmon laser by total internal reflection

Ren-Min Ma1†, Rupert E. Oulton1†, Volker J. Sorger1, Guy Bartal1 and Xian Zhang1,2*

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu
E-mail: mstockman@gsu
CONTENTS

• Introduction: Plasmonics and Nanoconcentration of Optical Energy; Applications of Nanoplasmonics
• Plasmonic Hot Spots
• Plasmonic Enhancement and Speed
• Adiabatic Nanofocusing and SPIDER
• Nanolenses
• Spaser as an Ultrafast Quantum Generator and Nanoamplifier
• Conclusions

• Bonus: Ultrafast Nanoscale Coherent Control
• Bonus: Attosecond Plasmonic Field Nanoscope
BRIEF CONCLUSIONS

1. Nanoplasmonics is based on nanolocalization of optical fields due to SPs
2. Enhancement in nanoplasmonics is due to quality factor of SP modes and geometric concentration
3. Plasmonic hot spots is universal phenomena due to the scale-invariance of the nanoplasmonic phenomena
4. Adiabatic concentration is a non-resonant, wide-band, and non-radiative root to nanofocusing with extremely high throughput. There are demonstrated applications to nanoscopy and chemical nano-imaging.
5. Nanolenses are highly efficient enhancers of local field and SERS
6. SPASER is an efficient nanoscale generator and ultrafast quantum amplifier with a switch time \(~100\) fs for silver and \(~10\) fs for gold. It has the same size as MOSFET and can perform the same functions but is \(~1000\) times faster.
7. SPASERs have been observed in a number of experiments
8. The most promising applications of the SPASER are an ultrafast nanoamplifier, local optical energy source, active nano-label, and an element of metamaterials with compensated loss.
CONTENTS

• Introduction: Plasmonics and Nanoconcentration of Optical Energy; Applications of Nanoplasmonics
• Plasmonic Hot Spots
• Plasmonic Enhancement and Speed
• Adiabatic Nanofocusing and SPIDER
• Nanolenses
• Spaser as an Ultrafast Quantum Generator and Nanoamplifier
• Conclusions

• Bonus: Ultrafast Nanoscale Coherent Control
• Bonus: Attosecond Plasmonic Field Nanoscope
Different spectral components of the excitation pulse excite resonant surface plasmon modes. These excitations dynamically interfere creating time-dependent hot spots of local fields during their coherence time.

This interference can be directed by choosing phases and amplitudes of the different frequency components of the excitation pulse (pulse shaping).

Schematic of Coherent Control by Phase Modulation

Adaptive subwavelength control of nano-optical fields

Martin Aeschlimann\(^1\), Michael Bauer\(^2\), Daniela Bayer\(^1\), Tobias Brixner\(^3\), F. Javier Garcia de Abajo\(^4\), Walter Pfeiffer\(^5\), Martin Rohmer\(^1\), Christian Spindler\(^3\) & Felix Steeb\(^1\)

Trends in Nanoplasmonics: Faster, Smaller, Stronger!
Nanoplasmonic Energy Localization, Time Reversal, and Coherent Control

Idea of time reversal for subwavelength EM-wave localization:

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
Resonant Metalenses for Breaking the Diffraction Barrier

Fabrice Lemoult, Geoffroy Lerosey, * Julien de Rosny, and Mathias Fink

Institut Langevin, ESPCI ParisTech & CNRS, Laboratoire Ondes et Acoustique, 10 rue Vauquelin, 75231 Paris Cedex 05, France

(Received 8 January 2010; revised manuscript received 14 April 2010; published 18 May 2010)

We introduce the resonant metalens, a cluster of coupled subwavelength resonators. Dispersion allows the conversion of subwavelength wave fields into temporal signatures while the Purcell effect permits an efficient radiation of this information in the far field. The study of an array of resonant wires using microwaves provides a physical understanding of the underlying mechanism. We experimentally demonstrate imaging and focusing from the far field with resolutions far below the diffraction limit. This concept is realizable at any frequency where subwavelength resonators can be designed.

DOI: 10.1103/PhysRevLett.104.203901

PACS numbers: 41.20.—q, 78.67.Pt, 81.05.Xj

amplitude of E_x TEM Bloch modes (1,1), (2,3), (5,6), and (19,19).

(d) Focal spot obtained after far field time reversal

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
Controlling the Optical Near Field of Nanoantennas with Spatial Phase-Shaped Beams

Giorgio Volpe,† Sudhir Cherukulappurath,† Roser Juanola Parramon,† Gabriel Molina-Terriza,†‡ and Romain Quidant*†‡

ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain, and ICREA-Institució Catalana de . Estudis Avançats, 08010 Barcelona, Spain

Figure 4. Experimental TPL maps recorded for (a) a Gaussian beam and (b, c) a HG_{10} beam whose phase shift (located by the vertical dashed line) coincides with (b) the right gap and (c) the left gap.

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
CONTENTS

• Introduction: Plasmonics and Nanoconcentration of Optical Energy; Applications of Nanoplasmonics
• Plasmonic Hot Spots
• Plasmonic Enhancement and Speed
• Adiabatic Nanofocusing and SPIDER
• Nanolenses
• Spaser as an Ultrafast Quantum Generator and Nanoamplifier
• Conclusions
• Bonus: Ultrafast Nanoscale Coherent Control
• Bonus: Attosecond Plasmonic Field Nanoscope
Attosecond nanoplasmonic-field microscope

MARK I. STOCKMAN1,2*, MATTHIAS F. KLING2, ULF KLEINEBERG3 AND FERENC KRAUSZ2,3*

1Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
3Ludwig-Maximilians-Universität München, Department für Physik, Am Coulombwall 1, D-85748 Garching, Germany
*e-mail: mstockman@gsu.edu; ferenc.krausz@mpq.mpg.de

Published online: 3 September 2007; doi:10.1038/nphoton.2007.169
Schematic of Attosecond Nanoplasmonic Field Microscope

XUV photoelectrons accelerated by enhanced IR plasmonic local fields

Trends in Nanoplasmonics: Faster, Smaller, Stronger!

Web: http://www.phy-astr.gsu.edu/stockman
E-mail: mstockman@gsu.edu
Excitation field

Local optical electric field at the “hottest spot”

Attosecond pulse applied within a period of IR oscillations

$t_x = 14$ fs
Energy shift (eV) of electrons emitted by a 95 eV XUV attosecond pulse as a function of the as pulse excitation instant with respect to the infrared excitation field (frames are in 200 as) as observed in Photoemission Electron Microscope (PEEM).

Experiment directly measures instantaneous electric potential of nanoplasmic oscillations with nm spatial and ~200 as temporal resolution.

Nanosystem is 60x60 nm random silver film (50% filling factor)

Energy change (eV) of 90 eV XUV photoelectrons from silver nanosystem for 10 GW/cm² 800 nm IR power; × 10^{15} slowed down.