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Ultrashort extreme-ultraviolet pulses are a key tool in time-
resolved spectroscopy for the investigation of electronic
motion in atoms1,2, molecules3 and solids4. High-harmonic gen-
eration is a well-established process for producing ultrashort
extreme-ultraviolet pulses by direct frequency upconversion
of femtosecond near-infrared pulses5–7. However, elaborate
pump–probe experiments performed on the attosecond time-
scale8,9 require continuous efforts to improve the spatiotem-
poral coherence and also the repetition rate of the generated
pulses. Here, we demonstrate a three-dimensional metallic
waveguide for the plasmonic generation of ultrashort
extreme-ultraviolet pulses by means of field enhancement
using surface-plasmon polaritons. The intensity enhancement
factor reaches a peak of ∼350, allowing generation up to the
43rd harmonic in xenon gas, with a modest incident intensity
of ∼1 3 1011 W cm–2. The pulse repetition rate is maintained
as high as 75 MHz without external cavities. The plasmonic
waveguide is fabricated on a cantilever microstructure and is
therefore suitable for near-field spectroscopy with nano-
metre-scale lateral selectivity.

Surface-plasmon polaritons (SPPs) are described as the electro-
magnetic wave propagating along a metal–dielectric interface that
results from coupling between incident photons and surface plas-
mons10,11. In nanostructured tapered waveguides, SPPs can be con-
trolled to adiabatically follow the geometric shape of the waveguide
and asymptotically stop at the tip of the taper where the local cross-
sectional dimension becomes infinitesimally small12,13. As a result,
SPPs can be focused beyond the diffraction limit in three dimen-
sions on a sub-wavelength spot, with drastically enhanced optical
intensity12–14. The effect of SPP adiabatic nanofocusing has been
confirmed, studied and also tested for nanometre-scale microscopy
in a series of earlier experiments15–19.

In our investigation, this intriguing phenomenon of SPP adia-
batic nanofocusing is used to generate ultrashort extreme ultraviolet
(EUV) pulses directly from near-infrared (NIR) pulses. As depicted
in Fig. 1, a three-dimensional waveguide was devised to concentrate
the incident NIR pulses into a sub-wavelength spot, allowing high-
harmonic generation of EUV light pulses to take place with high
spatiotemporal coherence. The waveguide is a metallic nanostruc-
ture made of silver and has a hollow hole that takes the shape of a
tapered cone with its elliptical cross-section decreasing from the
inlet aperture (minor-axis diameter, �2 mm) to the exit aperture
(minor-axis diameter, �100 nm). The incident NIR pulses are
focused on the inlet aperture at a repetition rate of 75 MHz with a
moderate intensity of �1 × 1011 W cm22. While each NIR pulse
propagates through the tapered hole towards the exit aperture, the
electric field intensity inside the hole undergoes a substantial

boost that is sustained by the SPPs driven by the incident NIR
pulse. Consequently, high-harmonic EUV pulses are generated
exactly where the enhanced field reaches its peak near the exit aper-
ture. Gaseous atoms are supplied into the waveguide by controlling
the pressure difference between the inlet and exit apertures. The
peak intensity enhancement factor exceeds 20 dB, requiring no
additional pulse amplification to reach the threshold intensity
necessary to trigger the ionization process leading to high-harmonic
generation. The pulse repetition rate of the incident NIR pulses is
maintained during the generation process.

The tapered waveguide used in our experiment is geometrically
characterized by four parameters, as shown in Fig. 2c: the elliptic
ratio of the cross-section (r¼ b/a), the minor-axis diameter of the
exit aperture (d), the cone angle defined in the minor-axis plane
(u) and cone height (h). A finite-difference time-domain (FDTD)
simulation was conducted to determine the values of the four geo-
metrical parameters necessary to yield an optimum pattern of field
enhancement for high-harmonic generation within the waveguide
(see Methods for simulation conditions). By a series of trial-and-
error computations, these parameters were determined to be r¼
0.5, d¼ 100 nm, u¼ 148 and h¼ 9 mm. Figure 2a shows the inten-
sity field computed within the designed waveguide. The intensity
enhancement factor exceeded 20 dB with a peak of �350 over a
near-cylindrical volume (diameter, �240 nm; length, �450 nm)
near the exit aperture. Compared with bowties20 or nanorods21,
which have previously been used for field enhancement
through stationary resonance of localized surface plasmons,
the net volume of 20 dB intensity enhancement turns out to be
three orders of magnitude larger than that of a single bowtie
element or nanorod. This improvement is attributed to the strong
concentration of the converging SPPs that gradually accumulate
towards the exit aperture along the three-dimensional
tapered waveguide.

Figure 2b presents three consecutive snapshots that show how
the field intensity builds up strongly near the exit aperture. The inci-
dent NIR pulse turns into a plasmonic wave as it progressively
couples with the SPPs produced in the waveguide. The plasmonic
wave maintains the fundamental anti-symmetric mode of propa-
gation inside the waveguide, and cannot therefore escape through
the small exit aperture. Consequently, the plasmonic wave reverses
its propagation direction at the point where the minor-axis diameter
of the tapered waveguide reduces to below half its wavelength22–24.
This cutoff effect gives rise to a counter-propagating wave that
subsequently interferes with the incoming wave. As a result, the
combined wave forms a standing field near the exit aperture,
which gives a fourfold increase in peak intensity compared to the
incoming wave alone. Our simulation also confirms that an elliptic
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cross-section (r¼ 0.5) is more beneficial than a circular one with
r¼ 1.0, which achieves a maximum intensity enhancement of
only �180. Furthermore, the enhanced plasmonic field suffers no
significant group delay dispersion (only �15 fs2), with a tiny
plasmonic ring-down oscillation at the pulse tail.

For proof-of-concept experiments, the waveguide was fabricated
on a cantilever microstructure using a focused-ion beam (FIB)
milling process (see Fig. 3 and Methods for a detailed explanation
of fabrication). A series of experiments was then performed to vali-
date the effectiveness of the fabricated waveguide in generating EUV
radiation (see Fig. 4 and Methods for experimental conditions). The
high-harmonic spectrum of the generated EUV radiation was first
observed by using a transmission diffraction grating (Fig. 4a,b).
The measured spectrum successfully demonstrated the high harmo-
nics in the generated EUV radiation (Fig. 4c): H15 to H27
harmonics in the plateau and H29 to H43 in the cutoff region.
The nanometre-sized source implies a high spatial dispersion of
the generated EUV light, which affects the spectral resolution in
the spectra obtained with our set-up. We estimate the resolution
in the range of H15 to H43 to be 0.5–5.5 eV.

The observed high harmonics were cross-checked by measuring
the divergence angles formed when they were emitted from the exit
aperture. For this purpose, four different metal filters were prepared
(Fig. 4d): a 200-nm-thick aluminium filter, a 200-nm-thick germa-
nium filter combined with a 200-nm-thick aluminium sheet, a
100-nm-thick Parylene filter bonded on both sides with a 25 nm
sheet of aluminium, and a 500-nm-thick zirconium filter. Their
transmission spectral ranges were 20–80 nm, 40–60 nm, 1–40 nm

and 1–20 nm, respectively25. With the diffraction grating removed,
the transverse intensity distribution of the EUV radiation was
then monitored by moving the photomultiplier tube along the
major axis, yielding different divergence angles for the filters
(Fig. 4d): 328 for the aluminium filter, 208 for the germanium
filter, 138 for the Parylene filter and 68 for the zirconium filter
(Fig. 4d). Substituting the measured divergence angles into
Fraunhofer diffraction theory26 confirmed the longest wavelength
transmitted by each filter, together with its corresponding high-
harmonic order: 73 nm (H11) for the aluminium filter, 53 nm
(H15) for the germanium filter, 38 nm (H21) for the Parylene
filter and 18.6 nm (H43) for the zirconium filter.

No phase-matching was required when observing any of the har-
monics, because their generation was naturally confined only to the
sub-wavelength spot with a length of �400 nm where the enhanced
plasmonic field exceeded the intensity threshold of ionization. The
conversion efficiency was estimated by counting the photon
numbers while moving the photomultiplier tube across the entire
diffraction area for each filter. The photon number measured for
H15 and H17 harmonics was �1 × 109 photons/s, corresponding
to a conversion efficiency of �1 × 1028. This result is about 100
times higher than that measured for a 150-bowtie antenna array27.
The photon flux for each higher harmonic in the cutoff region
was on the scale of �1 × 107 photons/s. It is also worth noting
that the exit aperture is small enough to block not only the incident
NIR pulses, but also lower harmonics below 5th order. Neither
thermal damage nor optical breakdown was observed throughout
our experiment, because the silver-coated cantilever structure
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Figure 1 | Plasmonic nanofocusing of femtosecond NIR light pulses for high-harmonic generation of coherent ultrashort EUV pulses using a metallic

waveguide. Surface-plasmon polaritons are guided to converge to a sub-wavelength spot near the exit aperture, creating a strong boost in the intensity field

of incident NIR pulses propagating along the waveguide. EUV pulses produced by means of high-harmonic generation through interaction with xenon gaseous

atoms emanate through the exit aperture, while the driving NIR pulses are predominantly reflected backwards.
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holding the waveguide absorbed heat well and also functioned as a
good conductor.

In conclusion, the tapered waveguide of the present elliptical
hollow cross-section proved to be an effective means with

which to carry out plasmonic nanofocusing of NIR pulses for
high-harmonic generation of ultrashort EUV pulses with high
spatiotemporal coherence. The intensity enhancement factor
exceeds 20 dB, directly generating high harmonics up to 43rd
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Figure 2 | Computation of the enhanced electric field inside the waveguide by adopting a FDTD method. a, Snapshot illustrating the intensity distribution at

the moment when the intensity peak of the incident NIR pulse approaches the exit aperture. b, Three consecutive snapshots in time steps of 0.67 fs,

confirming the interferometric creation of a standing-wave field by the counter-propagating plasmonic field upon reflection from the exit aperture.

c, Four geometrical parameters considered in designing the waveguide (where r¼ b/a).
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Figure 3 | Waveguide fabrication on the tip of a cantilever microstructure using the FIB process. a, Scanning electron microscope (SEM) image of the

cantilever structure that houses the waveguide. b, Top view showing the inlet aperture of the waveguide. c, Bottom view showing the exit aperture.

d, Cross-sectional view cut along the major axis of the elliptical profile of the waveguide.
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order from a modest input intensity of 1 × 1011 W cm22 in an
interaction with xenon gaseous atoms. In comparison to previous
studies using planar nanostructures27 with bowtie or nanorod

shapes, this three-dimensional waveguide, as well as offering high
conversion efficiency, also provides improved immunity to
thermal damage and optical breakdown. The waveguide structure
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Figure 4 | Experimental results. a, Measurement scheme using a transmission-type diffraction grating and a photomultiplier (PM) tube. b, SEM images of

the grating showing the important dimensions. c, Measured spectrum spanning from the 15th (H15) to 43rd (H43) harmonics. Inset: comparison of photon

counts with the bowtie array of ref. 27. d, Transverse intensity distributions measured with different band-pass spectral filters (inset). Curves were obtained

with the grating removed while the PM tube was moved in steps of 0.5 mm. The PM tube was located at a distance of 60 mm from the tip. Error bars

indicate standard deviation of 10 repeated samplings taken at a given location.
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can be readily embedded on a cantilever tip to render it suitable for a
range of near-field experiments in attosecond science, including
time-resolved pump–probe spectroscopy and photoelectron
emission microscopy.

Methods
FDTD simulation. The waveguide structure was modelled using hexahedron grids
(5 nm × 5 nm × 5 nm) in three dimensions. The incident NIR pulses were assumed
to have a temporal duration of 10 fs with a 100 nm spectral width centred at a
wavelength of 800 nm. The wavelength-dependent dielectric constant of the
waveguide material (silver) was estimated by means of a modified Debye model28.
The polarization direction of the incident pulses was set parallel to the minor axis of
the elliptical cross-section of the inlet aperture.

Waveguide fabrication. The three-dimensional waveguide designed by FDTD
simulation was fabricated on a commercially available cantilever microstructure
for near-field optical microscopy (Nascatec GmbH). The cantilever was delivered
with a built-in hollow pyramid-shaped tip made of silicon nitride. In the first step of
the fabrication process, the hollow tip was filled from the bottom with platinum
(to a thickness of 3.5 mm), and a 10 mm layer of silver was then deposited on top
of the platinum layer. The designed elliptical profile was carved in the silver layer
by FIB milling. Specifically, the entire three-dimensional elliptical inner void
volume of the waveguide was divided into a total of 31 horizontally flat laminates
that were etched, one by one, to a depth of �300 nm from the inlet surface
towards the exit aperture. The bottom surface of the tip was finally polished flat
from the outside until the exit aperture had a diameter of 100 nm in the
minor-axis direction.

Experimental set-up. The fabricated waveguide was placed in a vacuum chamber
where the operating pressure was kept below 1 × 1024 torr. The NIR pulses used in
the experiment were delivered from a Ti:sapphire oscillator (Femtolasers,
Femtosource sPro) at a repetition rate of 75 MHz. Each pulse had an average power
of 1 nJ with a duration of 10 fs. The spectral width was 100 nm, centred at a
wavelength of 800 nm. The NIR pulses were focused via an aspheric lens to a 5-mm-
diameter spot on the inlet aperture, which had elliptical major- and minor-axis
diameters of 4.4 mm and 2.2 mm, respectively. The focused spot yielded an intensity
of 5 × 1011 W cm22, which was two orders of magnitude lower than the threshold
intensity required for high-harmonic generation. The entire sub-assembly of the
waveguide was contained in a gas cell with dimensions of 11 mm × 11 mm × 3 mm,
inside which xenon gaseous atoms were supplied with a controlled pressure of
70 torr. The gas cell was fitted with a 150-mm-thick Al2O3 window to allow the NIR
pulses to enter, as well as a through-hole with a diameter of 1 mm to enable the
generated EUV radiation to escape without reflection losses.

Spectral characterization. The diffraction grating (nm2 LLC, custom-made)
comprised a free-standing line array of bars with a pitch of 100 nm, fabricated on a
160-nm-thick membrane of silicon nitride using a through-etching process29,30.
The effective area was 1.1 mm × 4.1 mm (Fig. 4b) with a diffraction efficiency of
�20%. The first-order diffracted beam of the incident EUV radiation was aligned to
spread over an angle of 6–448 from the grating surface normal to allow wavelengths
of 10–70 nm to be monitored with a photomultiplier tube (Photonis, Model 4751).
The photomultiplier tube was sensitive only to short wavelengths below 100 nm and
was covered with an aluminium filter to prevent it from being disturbed by leaked
NIR fundamental or stray lower harmonics.
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