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Using rigorous numerical methods of analysis, this paper investigates nonadiabatic nanofocusing in
tapered nanorods with the major emphasis on structural optimization for achieving maximal
possible local field enhancement. Simple analytical equations for the determination of the optimal
length of the tapered rod are presented and discussed. It is also shown that for the considered
structures, optimal taper angle and optimal length of the rod only very weakly depend on the radius
of curvature of the rounded tip of the rod. Contrary to this, enhancement of the local electric field
at the rounded tip strongly increases with decreasing radius of the tip. Comparison of the numerical
results with the adiabatic theory of nanofocusing results in accurate verification of the applicability
conditions for adiabatic approximation in tapered nanorods. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2963699�

I. INTRODUCTION

A major problem in modern nano-optics is related to
effective concentration and delivery of electromagnetic en-
ergy to nanoscale regions.1–22 This is especially important for
imaging and diagnostics with nanoscale resolution �in near-
field microscopy and spectroscopy�, efficient coupling of
light into and out of nano-optical interconnectors and de-
vices, electromagnetic probing of separate molecules and
quantum dots, nonlinear plasmonics, etc. One of the current
resolutions of this problem is related to using plasmon nano-
focusing in metal nanostructures.1–22 These include dielectric
conical tips covered with a metal film,1–8 sharply tapered
metal rods,11–15 nanoparticle lenses,9,10 sharp V-grooves, and
nanowedges.16–22

Among the most promising structures for effective plas-
mon nanofocusing are sharply tapered metal nanorods.11–15

This is because, when dissipation in the metal is relatively
weak, nanorods typically provide significantly stronger local
field enhancement compared to the other considered nanofo-
cusing structures �when dissipation is strong, this may not
always be the case20�. The analysis of plasmon nanofocusing
in metal rods has been based on the approximate solution of
the wave equation11 �though applicability conditions for this
approach are fairly restrictive�, adiabatic approximation,12,13

and rigorous numerical analysis based on the finite-element
approach �using the commercially available COMSOL soft-
ware package�.14,15

The recent paper by Issa and Guckenberger14 has re-
ported the results of the first rigorous numerical analysis of
nonadiabatic plasmon nanofocusing in metal rods with
rounded tips and arbitrary taper angles. These results include
several important features one of which is the existence of an
optimal taper angle for the rod �similar to that for tapered
nanogaps17,20� for achieving strong local field enhancement

at the tip.14 The dependence of this optimal taper angle on
wavelength has also been investigated, demonstrating a sig-
nificant decrease in the optimal angle together with the si-
multaneous increase in the local field enhancement at the tip,
when plasmon frequency is decreased.14 It has also been
shown that increasing the length of the tapered rod, while
keeping the taper angle constant, also results in an increase
in the local field enhancement at the tip �while the optimal
taper angle does not seem to depend on the length of the
nanofocusing rod�.14

However, several important questions still remain unan-
swered. For example, no analysis of the local field enhance-
ment as a function of the radius of the tip has been conducted
so far. No comparison with the previously developed adia-
batic theory of plasmon nanofocusing in tapered rods has
been done, which leaves open the question about the actual
applicability of the adiabatic theory at relatively large taper
angles. Though it has been shown that increasing the length
of the rod results in an increase in the local field enhance-
ment at the tip, it is still not clear if this trend will continue
for all rod lengths, or there is an optimal length at which the
local field enhancement at the tip is maximal. All these ques-
tions are important for the practical applications of plasmon
nanofocusing in tapered rods and optimal design of these
structures.

Therefore, the aim of this paper is to conduct numerical
optimization of tapered nanofocusing metal rods and to de-
termine the optimal conditions and structural parameters for
achieving maximal possible local field enhancement at the
tip. In particular, it will be shown that there exists an optimal
length of the tapered rod, and a simple analytical condition
for an optimal geometry of the rod will be derived and dis-
cussed. Typical values of the maximal possible local field
enhancement in practically realistic structures will also be
determined. Detailed comparison of the numerical rigorous
analysis of plasmon nanofocusing with the previously devel-a�Electronic mail: d.gramotnev@qut.edu.au.
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oped adiabatic theory12,13 will be conducted, resulting in fur-
ther validation of the applicability conditions for the adia-
batic approximation.

II. STRUCTURE AND METHODS OF ANALYSIS

The analyzed structure is presented in Fig. 1�a�. A ta-
pered metallic rod with a taper angle � and complex permit-
tivity �m=e1+ ie2 �e1�0, e2�0� is surrounded by a lossless
dielectric medium with a permittivity �d �we will primarily
limit our consideration to the case of the tip surrounded by
vacuum, i.e., �d=1�. The coordinate axes are shown in Fig.
1�a�. The analysis will be conducted for the plasmon mode of
TM polarization with both the electric and magnetic fields
independent of the angle �, and magnetic field parallel to the
�-axis. This is because only such TM plasmons can exist at
arbitrarily small rod diameters and thus experience nanofo-
cusing in a tapered rod.12,13

If the taper angle of the rod is sufficiently small, so that
the variations of the plasmon wave number within one plas-
mon wavelength are negligible at all distances from the tip of
the rod, then the adiabatic �geometrical optics� approxima-
tion can be used for the analysis of nanofocusing. Math-
ematically, the applicability condition for the adiabatic ap-
proximation can be written as12,13,16,18,20,21

�d�Q1�−1

dz
� � 1, �1�

where Q1 is the real part of the plasmon wave number q
=Q1+ iQ2, and plasmon dissipation is assumed to be weak:
Q2�Q1.

Figure 1�b� presents the dependencies of the left-hand
side of inequality �1� on the distance from the tip of the gold
rod in vacuum with the radius of curvature of the tip R=0 for
the vacuum wavelength �vac=632.8 nm ��m=−11.44+1.12i
�Ref. 23� and �d=1� and different taper angles. In particular,
it can be seen that if the taper angle is increased, then in-
equality �1� may be breached near the tip �curves 3 and 4 in
Fig. 1�b��, while sufficiently far from the tip, where the rod
diameter is larger than the plasmon wavelength, it is satisfied
at all taper angles �Fig. 1�b��. This is because the plasmon
wave number starts to vary significantly �at large �� with
reducing rod diameter only when this diameter becomes
smaller than the plasmon wavelength. Therefore, the adia-
batic approximation can be used for the analysis of plasmon
propagation sufficiently far from the tip of the rod practically
at all taper angles. This is only near the tip, where condition
�1� imposes significant restrictions on the taper angle.

As a result, in this paper, we develop and use a new
method of analysis of nonadiabatic �i.e., when condition �1�
is not satisfied near the tip of the rod� plasmon nanofocusing
in rods with arbitrary taper angles, which is a combination of
the rigorous finite-element analysis based on the commer-
cially available software package COMSOL and adiabatic ap-
proximation. The rigorous analysis will be used close to the
tip of the rod where condition �1� is not satisfied, while the
adiabatic approximation will be used sufficiently far away
from the tip where condition �1� is satisfied. Such a combi-
nation is useful, because using rigorous numerical methods
in long tapered rods �of �10 �m, which is the typical length
of the optimized nanofocusing structures—see below� is
highly inefficient and will require substantial computational
resources.

It can be seen from Fig. 1�b� that at the vacuum wave-
length �vac=632.8 nm �He–Ne laser�, for a gold tapered rod
in vacuum ��m=−11.44+1.12i �Ref. 23� and �d=1� with
taper angles as large as �=90°, the adiabatic approximation
is valid for local rod diameters 2r	600 nm �r is the local
radius of the rod�. For example, for all taper angles repre-
sented by the curves in Fig. 1�b�, the left-hand side of in-
equality �1� is below �0.01, if r	300 nm. Thus the adia-
batic approximation is very well satisfied for rod radii r
	300 nm. Therefore, we can use the rigorous finite-element
analysis for r�300 nm and adiabatic theory for r
�300 nm. The results obtained from both the approaches
can then be matched at r�300 nm, i.e., the amplitude of the
plasmon incident onto the tip in the numerical approach is
made equal to the amplitude of the plasmon obtained from
the adiabatic theory.

In the numerical part of the analysis, we consider a sec-
tion of the tapered rod between the initial radius r=r1

=300 nm and the rounded tip �Fig. 1�a��. However, as we
will see below, for larger taper angles ��	30°� it is more
convenient to extend the section of the tapered rod where the

FIG. 1. �a� A metal rod with the taper angle �, permittivity �m=e1+ ie2, and
rounded tip of radius R, surrounded by a lossless dielectric material with the
real and positive permittivity �d, q is the wave vector of the TM surface
plasmon propagating toward the tip of the rod, and �x ,y ,z� and �r ,� ,z� are
the Cartesian and cylindrical systems of coordinates. �b� The dependencies
of the left-hand side of inequality �1� on the distance from the tip with R
=0 for the gold rods surrounded by vacuum at the vacuum wavelength
�vac=632.8 nm ��m=−11.44+1.12i �Ref. 23� and �d=1� and different taper
angles: �1� �=5°, �2� �=10°, �3� �=50°, and �4� �=90°; Q1 is the real part
of the plasmon wave number q.
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rigorous numerical method is used to the initial rod radius
r1=600 nm. The plasmon is launched in this section of the
rod by means of the boundary condition in COMSOL, speci-
fying the magnetic field at the cross section of the rod at the
radius r=r1. The distribution of the launching magnetic field
is assumed to equal to what it should be in the TM plasmon
mode in a uniform rod with the radius r=r1=300 nm �or
600 nm for �
30°�. The numerical analysis using COMSOL

has demonstrated that despite this chosen distribution of the
launching magnetic field, the expected field distribution in
the plasmon is achieved within a small distance from the
launching point that is approximately equal to one plasmon
wavelength. This is related to the Fabry–Perot resonance
�multiple plasmon reflections between the point of the end-
fire excitation and rounded tip� in the considered section of
the tapered rod, while the launching boundary conditions are
artificially fixed.

COMSOL provides an instantaneous field distribution in
the section of the tapered rod between the point of the end-
fire excitation with the local rod radius r=r1 and the rounded
tip. This instantaneous field distribution at every point corre-
sponds to a standing wave pattern formed by the incident
plasmon �propagating toward the tip of the rod� and reflected
plasmon �propagating away from the tip�. Changing phase of
the launching field between 0 and 2�, we obtain time evo-
lution of the standing wave pattern at every point of the
tapered rod between the initial point with the radius r=r1 and
the rounded tip �Fig. 2�. This pattern allows determination of
the local amplitudes of the incident and reflected plasmons at
a given distance from the rounded tip. Indeed, if two coun-
terpropagating waves interfere with each other and their am-
plitudes are different, they will form a typical standing wave
pattern shown in Fig. 2. The amplitudes of the incident and
reflected waves can then be determined from the following
simple equations:

Hmax = Hi + Hr, Hmin = Hi − Hr, �2�

where Hmin and Hmax denote numerically determined neigh-
boring local minimum and maximum of the envelope curve
for the standing wave pattern �Fig. 2�, and Hi and Hr are the
local amplitudes of the incident and reflected plasmons.

Note that this simple approach for the determination of
the local amplitudes of the incident and reflected plasmons in
a tapered section of a metal rod is only applicable if these
amplitudes do not change significantly within one plasmon
wavelength �p. This means that the difference between the
values of Hmax corresponding to two neighboring maxima of
the envelope curve must be small compared to Hmax at either
of these maxima �Fig. 2�. If this is not the case, i.e., the
amplitudes of the incident and reflected plasmons change
rapidly due to dissipation and/or nanofocusing effects on the
rod, then the proposed method may lead to significant errors
�this may be the case in the vicinity of the rounded tip, or
when the taper angle is relatively large, i.e., 	30°�. To re-
duce these errors, Eq. �2� could be modified to incorporate
varying plasmon amplitudes along the rod.

Typically, in good metals, dissipation is sufficiently
weak, so that the plasmon propagates at least several wave-
lengths, which means that the variation of its amplitude
within one plasmon wavelength �especially at relatively large
rod diameters� is small. Therefore, dissipation-related varia-
tions of the plasmon amplitude within ��p /4 �Fig. 2� can be
neglected. Only variations of the plasmon amplitude due to
focusing effects could be noticeable at relatively large taper
angles. In this case, Eq. �2� takes the form

Hmax = Hi1 + Hr1, Hmin = Hi2 − Hr2, �3�

where Hi1, Hr1 and Hi2, Hr2 are the amplitudes of the inci-
dent and reflected plasmons at the cross-sections 1 and 2,
respectively, chosen at a maximum and the neighboring
minimum of the envelope curve �Fig. 2�.

Equation �3� cannot yet be used to determine the plas-
mon amplitudes, because they contain four unknown ampli-
tudes. However, these amplitudes are not independent, and
Hi2 and Hr2 can be expressed in terms of Hi1 and Hr1. To do
this, we write

Hi2 = Hi1 + �Hif, Hr2 = Hr1 + �Hrf , �4�

where the variations �Hif and �Hrf are caused by focusing
effect on the tapered rod �dissipation-related variations are
neglected�. To calculate these variations, we note that the
circumference of the rod cross-section 2 is smaller than the
circumference of cross-section 1, because cross-section 2 is
closer to the tip of the tapered rod by �p /4 �Fig. 2�. The
difference between the circumferences C2 and C1 of the rod
cross-sections 2 and 1, respectively, is

�C � C2 − C1 = − 0.5��p tan��/2� . �5�

Because C2�C1, the energy flux in, for example, inci-
dent plasmon, which is proportional to Hi1

2 C1 at cross-section
1, must now be spread over the smaller circumference of
cross-section 2. Therefore, if the effect of dissipation within
the distance of �p /4 is negligible, energy conservation re-
quires that

FIG. 2. Typical interference �standing wave� pattern formed by the incident
�propagating toward the rounded tip� and reflected �propagating away from
the rounded tip� plasmons in a tapered gold nanorod with taper angle �
=6° and the radius of curvature of the tip R=5 nm at the vacuum wave-
length �vac=632.8 nm �He–Ne laser�; �d=1. Different curves correspond to
the distribution of the magnetic field in the interfering plasmons at different
initial phases of the launching field �between 0 and 2��, or, equivalently, at
different moments of time during the evolution of the standing wave pattern
within one period of the wave. Hmin and Hmax denote the neighboring maxi-
mum and minimum of the envelope curve, and �p is the local plasmon
wavelength. Zero on the horizontal axis corresponds to �3 �m distance
from the rounded tip.
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Hi1
2 C1 = �Hi1 + �Hif�2�C1 + �C� .

Here, we also assume that the coefficients of proportionality
between the energy flux in the plasmon and H2C are approxi-
mately the same for both cross-sections 1 and 2, and this is
correct if these cross sections are sufficiently far from the tip,
so that the variations of the plasmon wave number within
one wavelength are negligible. This is equivalent to the adia-
batic condition �1�. At the same time, in the developed ap-
proach, the length of the rod section where we use rigorous
numerical method must always be such that the adiabatic
condition �1� is satisfied near the point of the end-fire exci-
tation �in order to be able to match the adiabatic and nona-
diabatic approaches�. Retaining only the first order terms in
�Hif and �C, and using Eq. �5� we obtain

�Hif =
�Hi1�p tan��/2�

4C1
. �6�

Similarly, for the reflected plasmon,

�Hrf =
�Hr1�p tan��/2�

4C1
. �7�

Substituting Eqs. �6� and �7� into Eq. �4� and then into
Eq. �3� gives

Hmax = Hi1 + Hr1,

�8�

Hmin = �Hi1 − Hr1�	1 +
��p tan��/2�

4C1

 ,

where Hmin is the first minimum of the envelope curve from
the maximum Hmax in the direction toward the tip of the rod
�Fig. 2�.

Equation �8� represents the next approximation for the
determination of the local amplitudes Hi1 and Hr1 of the
incident and reflected plasmons at a distance from the tip,
corresponding to one of the maxima of the envelope curve
�e.g., cross-section 1 in Fig. 2�. Equation �8� is different from
Eq. �2� by the presence of the second bracket in the right-
hand side of the second of Eq. �8�, which represents the
correction due to variations of the plasmon amplitude caused
by the focusing effects on the tapered rod. If necessary, the
dissipation-related variation of the plasmon amplitude could
also be taken into account in the same fashion.

Note that increasing the taper angle at a fixed initial
radius of the rod r=r1 results in a decrease in rod length. As
a result, we have fewer maxima for the determination of the
incident plasmon amplitude and increased rate of changing
plasmon amplitude. This causes larger errors when using Eq.
�8� for the determination of the incident plasmon amplitude.
This is the reason why we use a larger initial radius r1

=600 nm for the section of the tapered rod where rigorous
numerical analysis is conducted, if �
30°.

As indicated above, plasmon propagation in the tapered
rod at local radii greater than r1=300 nm �or 600 nm for
�
30°� is considered using the adiabatic approximation.12,13

We assume that the plasmon amplitude is known at some
distance L from the tip �where the local rod diameter r0

�r1�. Using the adiabatic approximation,12,13 we determine

the amplitude of the plasmon at the same distance from the
tip where we have already found the amplitude of the inci-
dent plasmon in the rigorous numerical approach �i.e., by
solving Eq. �8��. This is typically about one plasmon wave-
length from the point of the end-fire excitation toward the tip
�where the standing wave pattern is established and the
above-described method based on Eq. �2� or Eq. �8� can be
used�. Then the plasmon field obtained in the numerical
method at every point of the tapered rod where r�r1 is
divided by the amplitude of the incident plasmon determined
in the numerical method at r�r1 �i.e., from Eq. �8��, and
multiplied by the same amplitude obtained at the same point
in the adiabatic theory. Thus we match the plasmon field
from the approximate adiabatic theory used for the descrip-
tion of plasmon propagation at r	r1 with the plasmon field
from the rigorous finite-element analysis used for the de-
scription of plasmon propagation near the tip �at r�r1�. This
approach allows the efficient analysis of plasmon propaga-
tion in long tapered rods �up to tens of micron length� and
enables optimization of these nanofocusing structures.

III. RESULTS AND DISCUSSIONS

Figure 3 shows the dependencies of the local electric
field enhancement at the rounded tip �with the radius of cur-
vature R=3 nm� of the gold tapered rod on the length of the
rod, i.e., distance at which the amplitude of the incident plas-
mon is assumed to equal to 1. Several important aspects can
be seen from this figure.

First, increasing the taper angle initially results in an
increase in the local field enhancement at the rounded tip for
all considered lengths of the rod �compare curves 1–6 in Fig.
3�. At an optimal angle, the local field enhancement reaches
a maximum �curve 6� and then starts decreasing for all con-
sidered lengths of the rod, when the taper angle is increased
further �compare curves 6 and 7�. Note that the existence of
an optimal taper angle for nanofocusing in tapered rods and

FIG. 3. The dependencies of the local electric field enhancement at the
rounded �with the radius of curvature R=3 nm� tip of the gold tapered rod
on the length of this rod L; �vac=632.8 nm �He–Ne laser�, �m=−11.44
+1.12i �Ref. 23�, and �d=1 �the rod is surrounded by vacuum�. The local
electric field �E� at the tip �i.e., at z=0� is normalized to the amplitude of
electric field �E0� in the plasmon at the initial cross section of the rod at z
=L. This is equivalent to having �E0�=1 at z=L �where r=r0�. Different
curves correspond to different taper angles: �1� �=6°, �2� �=10°, �3� �
=14°, �4� �=20°, �5� �=30°, �6� �=36°, and �7� �=52°.
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gaps has been investigated earlier in Refs. 14, 17, and 20.
The existence of an optimal angle of a tapered rod is related
to the competition of the following two opposing mecha-
nisms associated with plasmon propagation in such struc-
tures.

Suppose that the length L of the tapered rod is fixed, but
the taper angle � could be changed. Then, increasing � re-
sults in an increase in the circumference of the initial cross
section of the tapered rod at z=L. Therefore, if the amplitude
of the incident plasmon at the initial cross section z=L is
�E0�=1 for all taper angles, then the energy in the incident
plasmon at the initial cross section will increase with increas-
ing taper angle. This must lead to a tendency of increasing
local field enhancement at the tip with increasing �, because
larger energy of the incident plasmon will have to be focused
into the same nanoregion that is of the order of the radius of
curvature of the rounded tip. On the other hand, significantly
increasing the taper angle results in enhanced breaching in
the adiabatic approximation near the tip �Fig. 1�b��, and this
will lead to significant reflections of the plasmon from the
taper near the tip. As a result, a significant portion of the
energy of the incident plasmon will be reflected back from
the taper before it is able to reach the tip of the rod. This
effect increases with increasing taper angle, resulting in a
tendency of decreasing local field at the tip. Competition of
these two opposing mechanisms results in an optimal taper
angle at which the local field enhancement at the tip is maxi-
mal �see Figs. 3 and 4�.

The second important feature that can be seen from Fig.
3 is that increasing the length L of the tapered gold rod
initially results in an increase in the local field enhancement
�this is the confirmation of the similar finding made earlier
by Issa and Guckenberger14�. However, at L=Lopt�10 �m,
the local field enhancement at the rounded tip reaches a
maximum, and further increase in rod length results in a
monotonic decrease in the field enhancement at the tip
�curves 2–7 in Fig. 3�. This can again be understood by con-
sidering two opposing mechanisms for variations of the plas-
mon amplitude in the rod. One of these mechanisms is re-
lated to focusing effects on the tapered metal rod �see the
derivation of Eqs. �3�–�7�� and to plasmon dissipation. If the
plasmon propagates from a cross section of the rod with the
coordinate z to the cross section with the coordinate �z−dz�
�closer to the tip�, then its amplitude tends to increase be-
cause the plasmon energy must now be spread over the
smaller circumference of the cross section at z−dz �see also
Eqs. �4�–�7��. This effect occurs at all distances from the tip
of the tapered rod. However, increasing the distance from the
tip results in a decrease in the relative variations of the cir-
cumference for a fixed value of dz. This means that at large
distances from the tip of the tapered rod, increase in the
plasmon amplitude as it propagates the distance dz toward
the tip can be arbitrarily small �tending to zero with increas-
ing distance from the tip to infinity�. On the other hand, at
similar large distances from the tip, the rate of dissipation of
the plasmon in the rod tends to a finite value corresponding
to the dissipation rate of the plasmon on a flat metal surface.
Therefore, at large distances from the tip, dissipation should
be the dominant mechanism resulting in reduction of the

plasmon amplitude as it propagates toward the tip, whereas
at small distances focusing effects become dominant, result-
ing in increasing plasmon amplitude as it propagates toward
the tip. It follows from here that there is a distance from the
tip at which dissipation and the focusing effects exactly can-
cel each other. This distance is equal to the optimal length of
the tapered rod Lopt, at which local field enhancement at the
tip is maximal.

It is easy to derive an approximate analytical equation
for the optimal length of a tapered metal rod. If dissipation is
sufficiently weak, mutual cancellation of the dissipation and
focusing effects occurs at a large distance from the tip of the
rod, where the local rod radius is large compared to the plas-
mon wavelength. In this case, dissipation rate is determined
using the approximation that the plasmon propagates along a
flat metal interface. Thus we determine the dissipation-
related variation of the plasmon amplitude as the plasmon
propagates from the cross-section z to the cross-section z
−dz. Then, assuming that dissipation is zero, and calculating
the difference between the circumferences of the cross-
sections z and z−dz, we use energy conservation to deter-
mine the variation �increment� in the plasmon amplitude
caused by the focusing effect �similarly to how it was done
for Eqs. �4�–�7��. At the optimal distance from the tip of the
rod, the sum of these two variations of the plasmon ampli-

FIG. 4. Demonstration of the effect of different radii of curvature on the
rounded tip of the gold tapered rod of optimal length L=Lopt in vacuum:
�m=−11.44+1.12i �Ref. 23�, �d=1, and �vac=632.8 nm �He–Ne laser�. �a�
The dependencies of the local electric field enhancement at the tip of the
tapered gold rod on the taper angle at optimal rod length and different radii
of curvature of the tip: �+� R=2 nm; ��� R=3 nm; ��� R=4 nm; ��� R
=5 nm; ��� R=10 nm; �� R=14 nm. �b� The dependence of the maxi-
mal possible local electric field enhancement at the rounded tip of the rod
�i.e., at the optimal length of the rod and optimal taper angle� on the radius
of curvature R of the tip. The normalization of the local electric field �E� at
the tip �i.e., at z=0� is conducted to the initial amplitude of electric field �E0�
in the plasmon at z=L.
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tude must be equal to zero. This gives us the following equa-
tion for the optimal length of the tapered rod:

Lopt �
e1��d + e1�

e2�dq0
cos��/2� , �9�

where q0 is the real part of the wave number of the surface
plasmon on the flat metal interface �i.e., when r= +��.

As mentioned above, Eq. �9� is approximately correct if
the local rod diameter at z=Lopt is significantly larger than
the plasmon wavelength. It is easy to see that this condition
is satisfied if

sin��/2� �
e2�d

e1��d + e1�
. �10�

It is important that Eq. �9� provides an extremely simple
analytical equation for the required metal rod parameters in
order to ensure maximal local field enhancement at the tip.
Note that this equation �as well as its applicability condition
�10�� does not depend on the radius of curvature of the
rounded tip. However, it depends on frequency, because q0

and the real and imaginary parts of the metal permittivity are
frequency dependent.

For example, for a gold tapered rod in vacuum and at
vacuum wavelength �vac=632.8 nm, applicability condition
�10� suggests that Eq. �9� should be approximately correct
for taper angles ��10°, and the optimal rod length is
�10 �m within the range 10° ���80°. It is interesting
that optimal rod length only weakly depends on the taper
angle of the rod. This finding is in good agreement with Fig.
3, which also demonstrates that the maximum of the local
field enhancement at the tip is achieved at the rod length
�10 �m for all considered taper angles above 10° �see
curves 2–7 in Fig. 3�.

Similarly, for a silver tapered rod in vacuum and at the
vacuum wavelength �vaac=632.8 nm, applicability condition
�10� gives taper angles ��4°, and within the range 4° ��
�80°, the optimal length of the rod is �20 �m.

Note also that typically there is no need to determine the
optimal rod length very accurately, because the maximum of
the local field enhancement as a function of rod length is
typically broad. For example, as can be seen from Fig. 3,
variations of the gold rod length between �5 and �15 �m
do not have a profound effect on the achievable local field
enhancement at the tip. This is beneficial from the practical
point view, because it demonstrates high tolerance of the
described nanofocusing structures �tapered metal rods� to
structural imperfections and fabrication uncertainties. There-
fore, Eq. �9� should be regarded as an excellent guide for the
reliable determination of the optimal structural parameters in
a wide range of taper angles.

It is important to note that the optimal lengths of the
tapered metal rod have been determined by means of exclud-
ing multiple reflections from the point of the end-fire excita-
tion �see Sec. II�. Certainly, if such multiple reflections �the
Fabry–Perot effect� exist in the structure, they may have a
significant impact on nanofocusing and, in particular, optimal
length of the rod. Equations �9� and �10� were derived in the
absence of reflections from the point of the end-fire excita-

tion. At the same time, taking such reflections into account in
the current model would be inappropriate, because they
would have been related to a nonphysical boundary condi-
tion at the point of the end-fire excitation, where the plasmon
field was artificially fixed �see Sec. II�. This is not what
typically happens in a physically realistic situation, for ex-
ample, when the tapered metal rod is attached to an optical
fiber. Therefore, the Fabry–Perot effect in the tapered section
of the rod has been eliminated by means of the discussed
normalization of the obtained local field enhancement and
matching the incident wave amplitude near the point of the
end-fire excitation to that obtained from the adiabatic theory
�see Sec. II�. The question about a realistic Fabry–Perot ef-
fect in a section of a tapered rod with the subsequent opti-
mization of the structural parameters is a separate problem
that is beyond the scope of the current paper.

There are two other important aspects that can further be
drawn from Fig. 3. First, even in the gold nanorods, achiev-
ing very strong local field enhancement does not seem to be
a problem �in silver rods the enhancement is even greater�.
For example, local field enhancement at the tip of the radius
of curvature R=3 nm at the optimal taper angle and optimal
rod length �curve 6� is such that it should provide an �12
order enhancement of the Raman signal, which is close to
what is required for single molecule detection. Second, typi-
cal optimal lengths of the nanofocusing rods are in microme-
ters, which is a significant simplification for fabrication and
practical use of these structures, for example, as tips in scan-
ning near-field microscopy and spectroscopy.

The effect of curvature of the rounded tip on the local
field enhancement is demonstrated in Fig. 4. For example, as
can be seen from Fig. 4�a�, local field enhancement at the tip
rapidly increases with decreasing radius of curvature R of the
tip. Varying R from 5 to 2 nm results in an approximately
four times increase in the local electric field enhancement,
demonstrating high sensitivity of the rod structure to the ra-
dius of the tip. Therefore, careful fabrication of the rounded
tip of the tapered rod is crucial for achieving required con-
trollable local field enhancement. On the other hand, the op-
timal taper angle hardly depends on R �compare the curves in
Fig. 4�a��. It is possible to notice only very weak tendency
toward increasing optimal taper angle with decreasing radius
of the tip. As has been indicated above, optimal rod length is
also independent of R.

Figure 4�b� presents the dependence of the absolute
maximum of the local electric field enhancement at the
rounded tip �at the optimal taper angle and optimal length of
the rod—see the maxima on the curves in Fig. 4�a�� on the
radius of curvature of the tip. Further reduction of the tip
radius R is unreasonable, because this would require consid-
eration of spatial dispersion, Landau damping, and atomic
structure of matter12 �which is beyond the scope of this pa-
per�. The radius of the tip of �2 nm can thus be regarded as
the lower limit for the reasonable applicability of the devel-
oped theory of nanofocusing in tapered metal rods, which is
based on the approximation of continuous electrodynamics.
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IV. ADIABATIC VERSUS NONADIABATIC THEORY

In this section, we compare the adiabatic and nonadia-
batic theories of nanofocusing in tapered metal rods and, in
particular, determine/verify numerically the applicability
conditions for the adiabatic theory.12,13 Adiabatic theory as-
sumes no plasmon reflections from the tip of the rod.12,13 At
the same time, numerical analysis of nanofocusing in tapered
rods with rounded tips always results in some plasmon re-
flection from the tip. The reflected plasmon inevitably con-
tributes to the overall local field in the rod �see Sec. II�.
Therefore, in order to sensibly compare the approximate
�adiabatic� and rigorous numerical results, we need to elimi-
nate reflections from the tip in the numerical approach. This
could be achieved by means of attaching a uniform nanowire
to the exit cross section of the tapered rod, such that the
diameter of the nanowire is equal to the smallest �exit� di-
ameter of the tapered rod �Fig. 5�a��.

The length of the nanowire is chosen to ensure efficient
dissipation of the plasmon, i.e., suppressing plasmon reflec-
tions from the free end of the nanowire. In this case, the
plasmon will largely continue propagating into the wire,
rather than being reflected from the exit section of the ta-
pered section of the rod �if the angle � is not too large�. Thus
there will be no reflected plasmon in the tapered section of
the rod, which enables the direct comparison with the adia-
batic theory of nanofocusing.12,13

As an example, the comparison between the adiabatic
and nonadiabatic theories of nanofocusing is conducted for a
gold tapered rod with the gold nanowire attached to it �Fig.
5�a��. The resultant dependencies of the z-component of the
electric field near the surface of the rod at z=0, i.e., at the
exit cross section �Fig. 5�a��, on the taper angle � are shown
in Fig. 5�b� for the adiabatic theory �crosses and solid curve�
and nonadiabatic rigorous numerical analysis �circles�. The
other structural parameters are shown in the figure caption
for Fig. 5.

It can be seen that the adiabatic theory is approximately
valid up to �35° taper angle. Above these values of �, re-
flections of the plasmon from the taper itself appear to be
strong enough to noticeably reduce the overall energy reach-
ing the exit cross section at z=0 �Fig. 5�a��, and this results
in decreasing local field enhancement at z=0 in the rigorous
numerical analysis, compared to the adiabatic theory. This
explains the significant deviation of the numerical curve
from that obtained in the adiabatic approximation for larger
taper angles ��35° �Fig. 5�b��.

The fact that the adiabatic theory appears to be valid up
to angles �35° is quite remarkable. These angles appear to
be significantly larger than those for a tapered groove.17,20 At
this stage, physical explanation of this difference is not en-
tirely clear, but it should be related to weaker reflections of
the plasmon in a tapered rod compared to a tapered groove.
This seems to be a noticeable advantage of a tapered rod as a
nanofocusing structure. This is because tapered rods with
larger taper angles are easier to fabricate, and increasing the
taper angle results in a decrease in the contribution of the
dissipative effects on the plasmon amplitude �decreasing dis-
sipative energy losses�, which opens a possibility for achiev-
ing significantly larger local field enhancements.

It is also interesting that condition �1� that has been high-
lighted as the applicability condition for the adiabatic theory
seems to be too restrictive, and the approximate theory is
actually applicable for significantly larger angles for which
d�Q1

−1� /dz could be of the order of 1. Therefore, the applica-
bility condition �1� should rather be written in the form

�d�Q1
−1�

dz
� � 1. �1’�

For example, at �=35° and the local radius of the rod r
=5 nm, the left-hand side in inequality �1� is �0.84. This
demonstrates that the rate of changing wave number of the
strongly localized plasmon in a tapered rod is smaller than
for the tapered groove. This is because similar values of the
left-hand side in inequality �1� for a tapered groove are ob-
tained at significantly smaller taper angles.17,20

The values of the taper angles ��35° in Fig. 5�b�� at
which the adiabatic approximation ceases to be applicable
are approximately equal to the optimal angles for achieving
the largest possible field enhancement at the rounded tip
�Fig. 4�a��. This is expected, because the largest local field
enhancement is achieved when the taper angle is increased as
much as possible �to reduce the effect of dissipative losses in
the rod�, but only up to the angle at which the reflections
from the taper become significant, i.e., where the adiabatic
approximation ceases to apply.

FIG. 5. �a� The structure used for the comparison of the adiabatic and
nonadiabatic theories of nanofocusing in a tapered metal rod. A uniform
metal nanowire of the same material as the tapered rod is attached to the
smallest �exit� cross section of the rod in order to suppress �reduce� plasmon
reflections from the tip. �b� The dependencies of the z-component of the
electric field in the focused TM plasmon in the vacuum near the metal
surface at the smallest �exit� cross section of radius r=r2 of the tapered
section of the gold rod on the taper angle �; �vac=632.8 nm, �m=−11.44
+1.12i �Ref. 23�, �d=1, r1=300 nm, and r2=5 nm. The crosses and solid
curve represent the results from the adiabatic theory �Refs. 12 and 13�. The
circles represent the results from the nonadiabatic rigorous theory based on
finite-element analysis.
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V. CONCLUSIONS

The results obtained in this paper have provided impor-
tant practical information and criteria for fabrication and use
of optimal nanofocusing structures based on plasmon propa-
gation in tapered metal rods. In particular, we have con-
firmed the existence of optimal taper angle providing strong
local electric field enhancement at the tip �which was previ-
ously suggested by Issa and Guckenberger14�. We have dem-
onstrated the existence of the optimal length of the tapered
rod, which, in combination with the optimal taper angle, pro-
vides the maximal possible local field enhancement at the
rounded tip of fixed radius of curvature. A simple analytical
equation for the optimal rod length has been derived from
basic physical principles and verified against the rigorous
numerical results. Three order of magnitude local field en-
hancements are shown to be achievable during plasmon
nanofocusing in gold and especially silver nanorods. Strong
dependence of the local field enhancement on the radius of
curvature of the tip has also been demonstrated and investi-
gated.

One of the important practical outcomes of this paper is
that the optimal nanofocusing structures using metal rods are
relatively large. For example, the optimal length for a gold
�silver� rod is �10 �m ��20 �m�, while the optimal taper
angle for the gold rod is �36°. This means that the initial
diameter of the tapered nanofocusing rod should be �6 �m,
in order to achieve maximal possible field enhancement at
the tip. Such optimal tapered rods should be relatively easy
to fabricate. Due to their geometrical parameters and dimen-
sions, they should be strong and durable in use. Light could
be relatively easily coupled into plasmons propagating in
such rods. Moreover, it has been demonstrated that variations
of rod length around the optimal length by up to �50% �e.g.,
between �5 and 15 �m for the gold rod� do not result in
significant variations of the resultant local field enhancement
at the rounded tip. This demonstrates high tolerance of the
described structures to fluctuations of rod length, and this
seems to be highly beneficial for fabrication and practical
use.

At the same time, it has been demonstrated that plasmon
nanofocusing is highly sensitive to the conditions at the tip
of the tapered rod and, in particular, to its radius of curva-
ture. Therefore, one should pay significant attention to accu-
rate fabrication of the actual tip, including its shape and di-
mensions. Proper fabrication of the rounded tip should
ensure reproducible and strong local field enhancement of up
to three orders of magnitude.

The comparison of the obtained numerical results with
those from the adiabatic theory of nanofocusing has demon-
strated the validity of the approximate theory in a relatively
broad range of taper angles up to �35° �for gold rods�,

which opens wider opportunities for the successful use of the
adiabatic theory of nanofocusing in tapered metal rods.12,13

The obtained results will be important for the near-field
microscopy and spectroscopy, optimal design of optical cou-
plers for most effective delivery of the electromagnetic en-
ergy to nano-optical devices, quantum dots, single mol-
ecules, for the development of new optical sensors and
measurement techniques �e.g., based on surface-enhanced
Raman spectroscopy combined with nanofocusing�, etc.
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