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ABSTRACT

We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the
surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this
nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the
focused waveform as a function of time and one spatial dimension is completely coherently controlled.

Two novel areas of optics have recently attracted a great
deal of attention: nanooptics and ultrafast optics. One of
the most rapidly developing directions in ultrafast optics is
quantum control in which coherent superpositions of quantum
states are created by excitation radiation to control the
quantum dynamics and outcomes.1-4 Of special interest are
coherently controlled ultrafast phenomena on the nanoscale
where the phase of the excitation waveform along with its
polarization provides a functional degree of freedom to
control the nanoscale distribution of energy.5-11 Spatiotem-
poral pulse shaping permits one to generate dynamically
predefined waveforms modulated both in frequency and in
space to focus ultrafast pulses in the required microscopic
spatial and femtosecond temporal domains.12,13

In this Letter, we propose and theoretically develop a
method of full coherent control on the nanoscale where a
spatiotemporally modulated waveform is launched in a
graded nanostructured system, specifically a wedge. Its
propagation from the thick (macroscopic) to the thin (nano-
scopic) edge of the wedge and the concurrent adiabatic
concentration provide a possibility to focus the optical energy
in nanoscalespatial and femtosecond temporal regions. Our
method unifies three approaches that individually have been
developed and experimentally tested. The coupling of the
external radiation to the surface plasmon polaritons (SPPs)
propagating along the wedge occurs through an array of
nanoobjects (nanoparticles or nanoholes) that is situated at
the thick edge of the wedge. The phases of the SPPs emitted
(scattered) by individual nanoobjects are determined by a

spatiotemporal modulator. The nanofocusing of the SPPs
occurs due to their propagation toward the nanofocus and
the concurrent adiabatic concentration.

The coupling of the external radiation to SPPs and their
nanofocusing have been observed; see, e.g., refs 14,15. The
second component of our approach, the spatiotemporal
coherent control of such nanofocusing, has been devel-
oped.12,13 The third component, the adiabatic concentration
of SPPs, also has been recently observed.16,17 The idea of
adiabatic concentration has been proposed in refs 18,19 (see
also ref 20) and further developed theoretically21,22It is based
on adiabatic following by a propagating SPP wave of a
graded plasmonic waveguide, where the phase and group
velocities decrease while the propagating SPP wave is
adiabatically transformed into a standing surface plasmon
(SP) mode. A new quality that is present in our approach is
a possibility to arbitrary move the nanofocus along the
nanoedge of the wedge. Moreover, it is possible to super-
impose any number of such nanofoci simultaneously and,
consequently, create any distribution of the nanolocalized
fields at the thin edge of the wedge.

Consider first the adiabatic concentration of a plane SPP
wave propagating along a nanowedge of silver,23 as shown
in Figure 1a; the theory is based on the Wentzel-Kramers-
Brillouin (WKB) or quasiclassical approximation, also called
the eikonal approximation in optics,24 as suggested in refs
18. The propagation velocity of the SPP along such a
nanowedge is asymptotically proportional to its thickness.
Thus when a SPP approaches the sharp edge, it slows down
and asymptotically stops. In a real system with a sharp edge
of finite thickness (below we consider a 4 nmlimit, well
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within the achievable range), there is very substantial slowing
down, nanofocusing, and increase in field amplitude.

To illustrate the idea of this full coherent control, now
consider a wedge that contains a line of nanosize scatterers
(say, nanoparticles or nanoholes) located at the thick edge
and parallel to it, i.e., in thex direction in Figure 1b. Consider
first monochromatic light irradiating these nanoparticles or
nanoholes that scatter and couple it into SPP wavelets. Every
such scatterer emits SPPs in all directions; there is, of course,
no favored directionality of the scattering. However, we
assume that the excitation radiation and, correspondingly,
the scattered wavelets of the SPP are coherent, and their
phases smoothly vary in space along the thick edge, i.e., in
the x direction. The SPP wavelets emitted by different
scatterers will interfere, which in accord with the Huygens-
Fresnel principle leads to formation of a smooth wavefront
of the SPP wave at some distance from the scatterers in the
far SPP field.

Such wavefronts are shown in Figure 1b with concave
black curves. The energy of the SPP is transferred along the
rays, which are lines normal to the wavefronts, shown by
the colored lines. By the appropriate spatial phase modulation
of the excitation radiation along the line of scatterers over
distances of many SPP wavelengths, these wavefronts can
be formed in such a way that the rays intersect at a given
point, forming a nanofocus at the thin (sharp) edge of the
wedge, as shown schematically in Figure 1b. Diffraction of
the SPP waves will lead to a finite size of this focal spot
that we will estimate later in this Letter.

By changing the spatial phase profile of the excitation
radiation, this focal spot can be arbitrarily moved along the
thin edge. This focusing and adiabatic concentration, as the
SPPs slow down approaching the sharp edge, will lead to
the enhancement of the intensity of the optical fields in the
focal region. This dynamically controlled concentration of
energy is a plasmonic counterpart of a large phased antenna
array (also known as an aperture synthesis antenna or
beamformer), widely used in radar technology and radio
astronomy.25 Now we can consider excitation by spatiotem-
porally shaped ultrashort pulses.12,13 The field produced by
them is a coherent superposition of waves with different
frequencies whose amplitudes and phases can arbitrarily vary
in space and with frequency. This modulation can be chosen

so that all the frequency components converge at the same
focal spot at the same time, forming an ultrashort pulse of
the nanolocalized optical fields.

Turning to the theory, consider a nanofilm of metal in the
xyplane whose thicknessd in thezdirection is adiabatically
changing with the coordinate-vectorG ) (x,y) in the plane
of the nanofilm. Letεm ) εm(ω) be the dielectric permittivity
of this metal nanofilm, andεd be the permittivity of the
embedding dielectric. Because of the symmetry of the
system, there are odd and even (in the normal electric field)
SPPs. It is the odd SPP that is a slow-propagating, control-
lable mode. The dispersion relation for this mode defining
its effective indexn(G) is

wherek0 ) ω/c is the radiation wave vector in vacuum.
Let τ be a unit tangential vector to the SPP trajectory (ray).

It obeys an equation of ray optics24 n(dτ/dl) ) ∂n/∂G -
τ(τ∂n/∂G), wherel is the length along the ray.

Now let us consider a nanofilm shaped as a nanowedge
as in Figure 1b. In such a case,n ) n(y), and these trajectory
equations simplify asn(dτy/dl) ) τx

2(dn/dy), n(dτx/dl) )
-τxτy(dn/dy). From these, it follows thatnx t τxn ) const.
The SPP wave vector, related to its momentum, isk(G) )
k0n(G)τ; this is the conservation ofkx (the transverse
momentum). This allows one to obtain a closed solution for
the ray. The tangent equation for the ray is dx/dy ) τx/τy,

whereτy ) x1-nx
2/n2. From this, we get an explicit SPP

ray equation as

whereG0 ) (x0,y0) is the focal point where rays with anynx

converge. To find the trajectories, we use the real part of
effective index (eq 1), as WKB suggests.

When the local thickness of the wedge is subwavelength
(k0d , 1), the form of these trajectories can be found

Figure 1. (a) Illustration of adiabatic concentration of energy on the wedge. The distribution of local field intensityI in the normal plane
of propagation of SPPs (theyzplane). The intensity in relative units is color coded with the color scale bar shown to the right. This intensity
distribution is obtained after eq 4. (b) Trajectories of SPP rays propagating from the thick to sharp edge of the wedge. The initial coordinate
is coded with color. The black curves indicate lines of equal phase (SPP wave fronts).

tanh(12 k0d(G) xn(G)2 - εm) ) -
εd xn(G)2 - εm

εm xn(G)2 - εd

(1)

x - x0 ) ∫y0

y (n(y′)2

nx
2

- 1)-1/2

dy′ (2)

B Nano Lett.



analytically. Under these conditions, dispersion relation (eq
1) has an asymptotic solution

Substituting this into eq 2, we obtain an explicit SPP ray

equation (x - x0 - xnja
2/nx

2 - y0
2)2 + y2 ) nja

2/nx
2, wherenja )

na/(k0 tanθ), and tanθ is the slope of the wedge. Thus, each
SPP ray is a segment of a circle whose center is at a point

given byx ) x0 + x(nja/nx)
2-y0

2 andy ) 0. This analytical
result is in agreement with Figure 1b. If the nanofocus is at
the sharp edge, i.e.,y0 ) 0, then these circles do not intersect
but touch and are tangent to each other at the nanofocus
point.

As an example, we consider a silver23 nanowedge il-
lustrated in Figure 1b whose maximum thickness isdm )
30 nm, the minimum thickness isdf ) 4 nm, and whose
length (in they direction) isL ) 5 µm. Trajectories calculated
from eq 2 forpω ) 2.5 eV are shown by lines (color used
only to guide eye); the nanofocus is indicated by a bold red
dot. The different trajectories correspond to different values
of nx in the range 0e nx e n(L). In contrast to focusing by
a conventional lens, the SPP rays are progressively bent
toward the wedge slope direction.

The eikonal is found as an integral along the rayΦ(G) )
∫G0

G n(G) dG. Consider rays emitted from the nanofocus
(Figure 1b). Computed from this equation, the phases of the
SPPs at the thick edge of the wedge (fory ) L) are shown
in Figure 2a as functions of the coordinatex along the thick
edge. The colors of the rays correspond to the visual
perception of the ray frequencies. The gained phase dramati-
cally increases toward the blue spectral region, exhibiting a
strong dispersion. The extinction for most of the frequencies
except for the blue edge, displayed in Figure 2b, is not high.

Now consider the evolution of the field intensity along a
SPP ray. For certainty, let SPPs propagate along the
corresponding rays from the thick edge of the wedge toward
the nanofocus as shown in Figure 1b. In the process of such
propagation, there will be concentration of the SPP energy
in all three directions (3D nanofocusing). This phenomenon
differs dramatically from what occurs in conventional
photonic ray optics.

To describe this nanofocusing, it is convenient to introduce
an orthogonal system of ray coordinates whose unit vectors
areτ (along the ray),η ) (-τy,τx) (at the surface normal to
the ray), andez (normal to the surface). The concentration
along the ray (in theτ direction) occurs because the group
velocity Vg ) [∂(k0n)/∂ω]-1 of SPP asymptotically tends to
zero (for the antisymmetric mode) fork0d f 0 asVg ) V0gd
where V0g ) const.18 This contributes a factorA| ) 1/

xVg(d) to the amplitude of an SPP wave.
The compression of a SPP wave in theez (vertical)

direction is given by a factor ofAz ) (∫-∞
∞ W dz)-1/2, where

W is the energy density of the mode. Substituting a standard
expression24 for W, one obtains explicitly

where κm ) k0xn-εm and κd ) k0xn-εd. Note that the
intensity distribution in Figure 1a isI ∝ (A|Az)-2.

To obtain the compression factorA⊥ for the η direction,
we consider conservation of energy along the beam of rays
corresponding to slightly different values ofnx. Dividing this
constant energy flux by the thickness of this beam in theη
direction, we arrive at

The ray amplitude thus contains the total factor which
describes the 3d adiabatic compression:A ) A|A⊥Az.

Now consider the problem of coherent control. The goal
is to excite a spatiotemporal waveform at the thick edge of
the wedge in such a way that the propagating SPP rays
converge at an arbitrary nanofocus at the sharp edge where

Figure 2. (a) Phase (real part of eikonalΦ) acquired by a SPP ray propagating between a point with coordinatex on the thick edge and
the nanofocus, displayed as a function ofx. The rays differ by frequencies that are color coded by the vertical bar. (b) The same as (a) but
for extinction of the ray (ImΦ).
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an ultrashort pulse is formed. To solve this problem, we use
the idea of back-propagation or time reversal.26-28 We
generate rays at the nanofocus as an ultrashort pulse
containing just several oscillations of the optical field. By
propagating these rays, we find amplitudes and phases of
the fields at the thick edge at each frequency as given by
the eikonalΦ(G). Then we complex conjugate the amplitudes
of frequency components, which corresponds to the time
reversal. We also multiply these amplitudes by exp(2ImΦ),
which precompensates for the losses. This provides the
required phase and amplitude modulation at the thick edge
of the wedge.

We show an example of such calculations in Figure 3.
Panel (a) displays the trajectories of SPPs calculated ac-
cording to eq 2. The trajectories for different frequencies
are displayed by colors corresponding to their visual percep-
tion. There is a very significant spectral dispersion: trajec-
tories with higher frequencies are much more curved. The
spatial-frequency modulation that we have found succeeds
in bringing all these rays (with different frequencies and
emitted at differentx points) to the same nanofocus at the
sharp edge.

The required waveforms at differentx points of the thick
edge of the wedge are shown in Figure 3b-d, where the

corresponding longitudinal electric fields are shown. The
waves emitted at largex, i.e., at points more distant from
the nanofocus, should be emitted significantly earlier to
precompensate for the longer propagation times. They should
also have different amplitudes due to the differences inA.
Finally, there is clearly a negative chirp (gradual decrease
of frequency with time). This is due to the fact that the higher
frequency components propagate more slowly and therefore
must be emitted earlier to form a coherent ultrashort pulse
at the nanofocus.

In Figure 3e, we display together all three of the
representative waveforms at the thick edge to demonstrate
their relative amplitudes and positions in time. The pulse at
the extreme point inx (shown by blue) has the longest way
to propagate and therefore is the most advanced in time. The
pulse in the middle point (shown by green) is intermediate,
and the pulse at the center (x ) 0, shown by red) is last.
One can notice also a counterintuitive feature: the waves
propagating over longer trajectories are smaller in amplitude,
although one may expect the opposite to compensate for the
larger losses. The explanation is that the losses are actually
insignificant for the frequencies present in these waveforms,
and the magnitudes are determined by adiabatic concentration
factor A.

Figure 3. (a) Trajectories (rays) of SPP packets propagating from the thick edge to the nanofocus displayed in thexy plane of the wedge.
The frequencies of the individual rays in a packet are indicated by color as coded by the bar at the top. (b-d) Spatiotemporal modulation
of the excitation pulses at the thick edge of the wedge required for nanofocusing. The temporal dependencies (waveforms) of the electric
field for the phase-modulated pulses for three points at the thick edge boundary: two extreme points and one at the center, as indicated,
aligned with the correspondingx points at panel (a). (e) The three excitation pulses of panels (b-d) (as shown by their colors), superimposed
to elucidate the phase shifts, delays, and shape changes between these pulses. The resulting ultrashort pulse at the nanofocus is shown by
the black line. The scale of the electric fields is arbitrary but consistent throughout the figure.
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Figure 3e also shows the resulting ultrashort pulse in the
nanofocus. This is a transform-limited, Gaussian pulse. The
propagation along the rays completely compensates the initial
phase and amplitude modulation, exactly as intended. As a
result, the corresponding electric field of the waveform is
increased by a factor of 100. Taking the other component
of the electric field and the magnetic field into account, the
corresponding increase of the energy density is by a factor
∼104 with respect to that of the SPPs at the thick edge.

Consider the efficiency of the energy transfer to the
nanoscale. This is primarily determined by the cross section
σSPPfor scattering of photons into SPPs. For instance, for a
metal sphere of radiusR at the surface of the wedge, one
can obtain an estimateσSPP ∼ R6/(dm

3 l), where l is the
reduced photon wavelength. SettingR ∼ dm, we estimate
σSPP∼ 3 nm2. Assuming optical focusing into a spot of∼300
nm radius, this yields the energy efficiency of conversion to
the nanoscale of∼10-3. Taking into account the adiabatic
concentration of energy by a factor of 104, the optical field
intensity at the nanofocus is enhanced by 1 order of
magnitude with respect to that of the incoming optical wave.

The criterion of applicability of the WKB approximation
is ∂k-1/∂y , 1. By substitutingk ) k0n and eq 3, we obtain
a condition dm/(naL) , 1. This condition is satisfied
everywhere including the nanofocus becausena ∼ 1 anddm

, L for adiabatic grading. The minimum possible size of
the wavepacket at the nanofocus in the direction of propaga-
tion, ∆x, is limited by the local SPP wavelength:∆x ∼ 2π/k
≈ 2πdf/na. The minimum transverse sizea (waist) of the
SPP beam at the nanofocus can be calculated as the radius
of the first Fresnel zone:a ) π/kx g π/(k0nx). Becausenx is
constant along a trajectory, one can substitute its value at
the thick edge (the launch site), where from eq 3 we obtain
nx ≈ n ) na/dm. This results ina ≈ πdm/na; thus a is on
order of the maximum thickness of the wedge, which is
assumed also to be on the nanoscale.

To briefly conclude, we have proposed and theoretically
investigated an approach to full coherent control of spa-
tiotemporal energy localization on the nanoscale. From the
thick edge of a plasmonic metal nanowedge, SPPs are
launched whose phases and amplitudes are independently
modulated for each constituent frequency of the spectrum
and at each spatial point of the excitation. This premodulates
the departing SPP wave packets in such a way that they reach
the required point at the sharp edge of the nanowedge in
phase, with equal amplitudes forming a nanofocus where an
ultrashort pulse with required temporal shape is generated.
This system constitutes a “nanoplasmonic portal” connecting
the incident light field whose features are shaped on the
microscale, with the required point or features at the
nanoscale.
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