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Theory of dielectric nanofilms in strong ultrafast optical fields
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We theoretically predict that a dielectric nanofilm subjected to a normally incident strong but ultrashort (a
few optical oscillations) laser pulse exhibits deeply nonlinear (nonperturbative) optical responses which are
essentially reversible and driven by the instantaneous optical field. Among them is a high optical polarization and
a significant population of the conduction band, which develop at the peak of the pulse and almost disappear after
its end. There is also a correspondingly large increase of the pulse reflectivity. These phenomena are related to
Wannier-Stark localization and anticrossings between the Wannier-Stark ladders originating from the valence and
conduction bands leading to optical “softening” of the dielectric. Theory is developed by solving self-consistently
the Maxwell equations and the time-dependent Schrödinger equation. The results point out to a fundamental
possibility of optical-field effect devices with the bandwidth on the order of optical frequency.

DOI: 10.1103/PhysRevB.86.165118 PACS number(s): 72.20.Ht, 42.65.Re, 77.22.Jp

I. INTRODUCTION

Experimental availability of intense ultrashort (a few
femtosecond-long) optical pulses with just a few oscillations
of optical field opens up unique possibilities of optical control
of the electric and optical properties of dielectric materials
within femtosecond time scale.1,2 The electric field in such
intense optical pulses is comparable to the internal fields
acting on valence electrons in atoms and solids and is on the
order of a few V/Å.2,3 Interaction of the electrons of a solid
with such strong fields has long been the subject of intensive
research.4–8 A strong-field optical pulse induces deep changes
of the system, which can be reversible for a short enough
pulse.3,9–13

For semiconductors and their heterostructures, the optical
field causes decrease of the bandgap between the valence
and conduction band known as Franz-Keldysh effect14,15 and
quantum-confined Stark effect,16,17 respectively. For conju-
gated molecules, which are organic semiconductors, it has
been predicted that the Stark effect decreases the gap between
the occupied and unoccupied molecular orbits leading to
absorption of the initially non-resonant pulses and electrical
currents due to the ω − 2ω interference.18

A dielectric subjected to a weak optical field reacts to its
change instantly (adiabatically) as long as the laser frequency
ω0 is small enough, ω0 � �g/h̄, where �g is the gap between
the valence band (VB) and conduction band (CB); e.g, for
silica �g ≈ 9 eV. This adiabaticity implies that the light-matter
interaction is fully reversible: after the pulse end, the system
returns to its ground state, the residual excited-band population
is small, and so is the residual interband polarization. This is
expected for wide-bandgap dielectrics.

When the pulse field F increases, approaching the critical
field strength Fcrit, which induces a change in electron potential
energy by �g over the lattice period a ∼ 5 Å, the adiabatic
band gap decreases and completely collapses, where

Fcrit = �g

|e|a ∼ 2
V

Å
, (1)

and e is electron charge.
Previously, theoretical analysis of interaction of a intense

optical pulse with dielectric media was mainly restricted

to relatively long pulses with duration �100 fs. For such
pulses, the electron dynamics in the time-dependent field
of the pulse be described in terms of the density matrix
whose evolution is determined by rate equations with phe-
nomenological relaxation and generation times.19–23 In this
description, the effect of the pulse electric field is restricted
to generation of an electron-hole plasma through multiphoton
or collisional ionization processes. Such rates as functions of
the instantaneous electric field are usually introduced into the
model phenomenologically.

Another theoretical approach to interaction of ultrashort
optical pulse with semiconductor and dielectric media was
introduced in Refs. 24–26. In these publications, a coupled
system of Maxwell equations and time-dependent density-
functional theory equations is solved numerically for diamond
or silicon. In Ref. 26, the frequency of the pulse is close to
the interband gap, i.e., the system is close to the resonance
conditions. Therefore, although the duration of the pulse is
small, ∼10 fs, the dielectric system experiences a nonadiabatic
dynamics with high residual excitation and a strong increase
of the pulse reflectance.

In the present article, we consider an extremely intense and
ultrashort pulse with duration of a several femtoseconds, and
the dielectric system far away from the resonant conditions.
Specifically, we consider silica with bandgap �g ≈ 9 eV and
pulse carrier frequency h̄ω0 = 1.5 eV. With relaxation time
∼20 fs, the electron dynamics for such an ultrashort pulse
is expected to be field-driven and coherent (Hamiltonian),
which can be described in terms of wave functions.11,13 We
introduce a coupled system of Maxwell equations and the time-
dependent Schrödinger equation, and solve it numerically. The
Hamiltonian of the dielectric system is of the nearest neighbor
tight-binding type with the parameters chosen to reproduce the
band structure of silica. Within this approach, the electric field
of the pulse couples the states of the VB and the CB of the
dielectric. Inherent in this system, electrons are dynamically
transferred to the CB without any assumptions about the
generation rate. We apply this approach to a nanofilm of silica
with a thickness of �150 nm.

Under such conditions, the underlying electronic dynamics
is characterized by a strong localization of the Wannier-Stark
(WS) states.7,27 These states originating from a given band
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are separated by the Bloch oscillation frequency,28 which
significantly exceeds ω0. Thus the electron dynamics is mostly
adiabatic except for anticrossings of the Wannier-Stark levels
originating from different bands. At those anticrossings, rich
dynamics appears, which generally is a superposition of both
diabatic and adiabatic processes. This leads to “softening”
of the system: enhanced optical responses of the dielectric,
in particular strong polarization and reflection of the pulse,
which are deeply nonlinear (nonperturbative) phenomena. For
the strong ultrafast fields that are still below the threshold of the
dielectric breakdown, the dynamics is reversible: the electron
population of the CB left after the pulse end is very low in
contrast to a relatively high CB population during the pulse.

With respect to the previous prediction of the adiabatic met-
allization of dielectric nanofilms,11,13 a significant difference
is that the present processes are too fast to be predominantly
adiabatic. Also of fundamental importance is that in the present
work the pulse field is parallel to the surface while in Refs. 11
and 13 it is normal to the surface causing appearance of the
so-called quantum bouncer states playing an important role.

The paper is organized as the following. In Sec. II, we
derive the main system of equations, which includes the
Maxwell equations and the Schrödinger equation. In Sec. III,
we introduce the Wannier-Stark states of CB and VB, and
coupled adiabatic states of electron system in the external
electric field. We discuss formation of the Wannier-Stark
states of a single band for time-dependent electric field of the
excitation near-infrared (NIR) pulse. In Sec. IV, we present the
results of the calculations and discuss physical interpretation
of these results. In Sec. V we present the concluding discussion
of the obtained results.

II. MODEL AND MAIN EQUATIONS

A. Propagation of optical pulse

We study propagation of an optical pulse using a coupled
system of equations, consisting of Maxwell equations, which
describe the propagation of the pulse in a system with a known
polarization, and the Schrödinger equations, which determine
electron dynamics and the polarization of the electron system.
The Maxwell equations are written down in the following
form:

∇ · D = 0, (2)

∇ · B = 0, (3)

∇ × F = −1

c

∂B
∂t

, (4)

∇ × B = 1

c

∂F
∂t

+ 4π

c

∂P
∂t

, (5)

where B is magnetic field, F is electric field, and D = F + 4πP
is the electric displacement field.

The polarization P of the dielectric medium is determined
by electron dynamics. This polarization, which is calculated
in the next section, depends on the electric field of the pulse in
a strongly nonlinear manner due to strong mixing of CB and
VB states in a high electric field.

Solution of the Maxwell equations determines the prop-
agation of the optical laser pulse and the fields outside and

z0

dielectric film

FIG. 1. (Color online) Schematic illustration of the pulse nor-
mally incident on the dielectric film. The pulse is propagating in the
positive direction of axis z. The dielectric film of a finite thickness,
d < 150 nm, is placed at z = 0. The size of the system in z direction
is 6000 nm.

inside the dielectric. The way we solve them takes into
account the boundary conditions at the surface of dielectric
film automatically. We assume that the optical pulse propagates
along the positive direction of the z axis, i.e., it is incident
normally on the dielectric film. In this case, all variables in
the Maxwell equations depend on z only, and the problem
becomes effectively one-dimensional.

We solve the Maxwell equations numerically by the finite
difference time domain (FDTD) method29,30 for a finite size
system with the absorbing boundary conditions. The size of
the computational space in the z direction is 6000 nm with
the coordinates of the boundaries z1 = −3000 nm and z2 =
3000 nm. The dielectric film is placed at the midplane of
the system, i.e., it is centered at z = 0. The optical pulse
is generated at the left boundary and propagates along the
positive direction of the z axis with the polarization of the
electric field along the x axis—see Fig. 1. We assume that
the pulse has the following shape:

Fx(t) = F0e
−(�vt)2

cos(ω0t), (6)

where F0 is the amplitude of the pulse, which is related to its
power, P , thorough the relation P = cF 2

0 /4π ; τp = 1/�v is
the duration of the pulse, ω0 is the carrier frequency of the
pulse. Below we assume that the frequency of the pulse is in
the near-infrared (NIR) range, h̄ω0 = 1.5 eV, and the duration
of the pulse is τp = 4 fs.

In FDTD solutions of the Maxwell equations, we choose
the spatial step to be 1 nm, while the time step is 0.7 as (1 as =
10−18 s). These values provide convergence for both
the Maxwell equations and the Schrödinger equation—see
Sec. II B.

B. Electron dynamics

We capitalize on the fact that in our case the pulse length
τp = 4 fs is very short. In fact, it is much shorter than typical
time of the electron-electron Coulomb interaction τe. For
instance, in such a good metal as silver, τe ≈ 20 fs—see,
e.g., Ref. 31, i.e., τp � τe. Hence, during the pulse duration
the electron-electron collisions do not have time to produce a
significant effect on the electron dynamics. Correspondingly,
we will neglect the Coulomb interaction and describe the
light-matter interaction by one-particle Schrödinger equation.
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The electron dynamics in a periodic lattice potential in the
presence of an external electric field Fx is described by the
Hamiltonian:

H = p2

2m
+ V (r) + eFx(z,t)x, (7)

where V (r) is the periodic crystal potential, m is the electron
mass, and e is elementary charge. The electric field, Fx(z,t),
which is calculated from the Maxwell equations (2)–(5),
depends on the z coordinate and time t .

Without an external electric field, the periodic potential,
V (r), produces the standard band structure of a solid with
conduction and valence bands. The external electric field
results in time-dependent coupling between different bands.
For Fx(z,t) periodic in t , which our field is not, such a coupling
would be described by quasienergies.

Below we carry out our analysis for a multiband system
that includes both the conduction and valence bands. We
denote the numbers of the conduction and valence bands as
Nc and Nv , respectively, where the total number of bands
is Nbands = Nc + Nv . The bands are labeled by index α =
1, . . . ,Nbands.

For simplicity, we also assume that the periodic potential is
separable in the x,y, and z-directions. Then for each value of
the z coordinate, the electron dynamics in the x direction, i.e.,
in the direction of external electric field, becomes decoupled
from the motion along the z and y directions. Correspondingly,
in the y and z directions the potential is periodic with period a.
In the x direction, the potential is aperiodic: it is a superposition
of the periodic crystal potential and the external potential
of the uniform electric field, eFx(z,t)x, depending on the z

coordinate as a parameter and on time t .
In the absence of an external field, the eigenfunctions of

Hamiltonian (7) in the x direction are Bloch functions, ψαk(x),
which are labeled by wave vector k, −π/a < k � π/a, and
have the following form:

ψαk(x) = 1

2π
eikxuαk(x), (8)

where uαk(x + a) = uαk(z) are periodic Bloch unit-cell func-
tions. In the zero external field, the Bloch functions diagonalize
the Hamiltonian (7) yielding energy dispersion relation Eα(k)
for a band α.

We use an approximation of the tight-binding model32,33

for dispersion relations of the conduction and valence bands,

Eα(k) = εα + �α

2
cos(ka), (9)

where �α is the width of band α and εα is the band offset,
which is the midpoint of the band α.

The external electric field, Fx(z,t), introduces coupling of
states of different bands and also causes time dependence of
the electronic wave functions. Using the Bloch functions as
the basis, we can express the general solution of the time-
dependent Schrödinger equation in the following form:

�(x,z,t) =
Nbands∑
α=1

√
a

2π

∫ π/a

−π/a

dkφα(k,z,t)ψαk(x). (10)

Here the dependence of the wave function, �(x,z,t), on coor-
dinate z is due to electromagnetic wave propagation expressed

as the dependence Fx(z,t) on coordinate z. Substituting
expression (10) of the wave function into the Schrödinger
equation ih̄∂�/∂t = H�, we obtain equations34,35 on expan-
sion coefficients φα(k,z,t)

ih̄
dφα(k,z,t)

dt
=

[
Eα(k) + ieFx(z,t)

d

dk

]
φα(k,t)

+Fx(z,t)
∑
α′

Zαα′φα′(k,z,t), (11)

where

Zαα′ = e

a

∫ a

−a

dzuαk(z)∗i
∂

∂k
uα′k(z) (12)

are parameters of the model, which are the dipole matrix
elements between the unit-cell Bloch functions of bands α

and α′.
For a single band and in a constant electric field Fx ,

solutions of Eq. (11) are Wannier-Stark states,27,28 which are
parametrized by an integer quantum number l and have wave
functions35

φ̃αl(k) = ei[lak+γα sin(ka)], (13)

where γα = �α/(2eaFx). In the coordinate representation,

φ̃αl(x) = Jl−x/a(γα), (14)

where Jn(x) is the Bessel function of the first kind.
The corresponding energies of the Wannier-Stark states are

εαl = εα + leaFx. (15)

These energies are equidistant and form the so-called Wannier-
Stark ladder36–38 with the levels separated by the Bloch-
oscillation frequency

ωB = eaFx/h̄. (16)

This spacing physically corresponds to the energy needed to
move an electron by one lattice constant in the field direction.
Thus, in the constant (or, adiabatic) electric field, the electron
spectrum of the system is universal: each band gives rise to a
Wannier-Stark ladder with the same level spacing h̄ωB . While
the form of the Wannier-Stark wave functions (13) or (14)
are specific for the tight-binding approximation, i.e., model-
dependent, the energy spectrum of the Wannier-Stark states
depends only on the lattice constant and is model-independent.

In a time-dependent electric field Fx(z,t), it is convenient
to solve the Shrödinger equation (11) using an adiabatic
basis of the time-dependent eigenfunctions φ̃αl(k,z,t) and the
corresponding eigenenergies εαl(z,t), which acquire their time
dependence due to that of Fx(z,t). These adiabatic basis wave
functions we chosen as

�̃αl(k,z,t) = exp

[
− i

h̄

∫
εαl(z,t)dt

]
φ̃αl(k,t,z), (17)

where we have explicitly indicated the evolutionary exponent
due to the phase accumulation of the adiabatic solution.

We emphasize that this adiabatic basis describes a system
of uncoupled Wannier-Stark ladders of different bands and
does not take into account the coupling between them due to
the Zener tunneling.39 We will call it an uncoupled adiabatic
basis. It is different from the complete adiabatic basis, which
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is a solution of the full Scrödinger equation in a stationary
(adiabatic) external field.

We perform a discreet Fourier transform of the adiabatic
basis wave functions (17) from the integer variable l to
“quasimomentum” −π < q � π defined as

�̃αq(k,z,t) =
∑

l

e−iql

√
L

�̃αl(k,z,t). (18)

Then the solution of the Schrödinger equation (11) can be
expressed in the following form:

φα(k,z,t) =
∑

q

βα(q,z,t)�αq(k,z,t), (19)

where βα are expansion coefficients, which satisfy the follow-
ing system of equations:

dβα(q,z,t)

dt
= iμα(t,z)βα(q,z,t)

− i
Fx(z,t)

h̄

∑
α′

Zαα′καα′βα′ (q,z,t). (20)

Here

μα(z,t) = −dγα

dt
sin

(
q + ea

h̄

∫
Fx(z,t)dt

)
(21)

and

καα′ = exp

{
i

[
t
εα − εα′

h̄

+ (γα′ − γα) sin

(
q + ea

h̄

∫
Fx(z,t)dt

)]}
, (22)

where, as everywhere else in this article, α,α′ = 1, . . . ,Nbands.
Eliminating the diagonal terms from the system (20) via the

following substitution:

βα(q,z,t) = β̂α(q,z,t)ei
∫

μαdt , (23)

we obtain the final system of equations, which describes
coupling of the states of the conduction and the valence bands,

dβ̂α(q,z,t)

dt
= −i

Fx(z,t)

h̄

∑
α′ 	=α

Qαα′ (q,z,t)β̂α′ (q,z,t), (24)

where we have denoted

Qαα′(q,z,t) = Zαα′ exp

{
i

[
t
εα − εα′

h̄
+ �α − �α′

2h̄

×
∫ t

−∞
dt1 cos

(
q + ea

h̄

∫ t1

−∞
Fx(z,t2)dt2

)]}
.

(25)

The system of equations (24) and (25) describe dynamics of
an electron in an external time-dependent electric field within
the Nbands-band approximation.

Combining all terms in the definition of function
�αq(k,z,t), one can derive that the solution of the Shrödinger
equation [see Eq. (19)], can be also expressed in term of the
Houston functions40 �(H )

αq (k,z,t),

φα(k,z,t) =
∑

q

β̂α(q,z,t)�(H )
αq (k,z,t), (26)

where

�(H )
αq (k,z,t) = δ̃(k − kF (t))

× exp

{
−i

(
t
εα

h̄
+ �α

2h̄

∫ t

dt1 cos[kF (t1)a]

)}
,

(27)

where the time-dependent wave vector is defined as

kF (t) = q

a
+ e

h̄

∫ t

Fx(z,t1)dt1, (28)

δ̃(k) = ∑
n δ(k + 2πn/a) with summation over integer n, and

δ(k) is the Dirac δ function.
The system of equations (24) and (25) is applicable to

an electronic system with any number of bands Nbands. For
simplicity, below we consider only two bands: one valence
band and one conduction band, i.e., Nbands = 2. Such two-
band system captures main features of the propagation of
an ultrashort optical pulse through a dielectric film. We
assume that the dielectric is silica with the parameters of the
Hamiltonian corresponding to the band structure of silica.41

Namely, we choose εc = 0, εv = −11.25 eV, �v = 0.5 eV,
and �c = −4.0 eV. Such values of the parameters determine
the band gap of silica equal to 9 eV.

An additional parameter, which characterizes the electron
dynamics, is the interband dipole matrix element Zvc. For
a two-band system, there is only one such a parameter
corresponding to the dipole coupling of the CB and VB. It
is obvious that Zvc � ea ∼ 5 eÅ, where we assume that the
lattice constant of silica is a = 5 Å. Correspondingly, we will
mostly use below values for this parameter Zvc = 1 eÅ and
Zvc = 3 eÅ. Note that eÅ ≈ 4.8 debye.

A unique feature of the coherent dynamic equations (24)
is that the interband coupling is realized only between the
states with the same value of quasimomentum q. This property
strongly simplifies the problem, since now we only need to
solve the finite system of two-component (in this case of a
two-band electron system) first-order differential equations.

The relaxation processes, which take place on a longer
time scale, t � τe ∼ 20 fs, would lead to population transfer
between states with different q. In such a case purely
Schrödinger description of the dynamics would be impossible
and the dynamics could be described using, e.g., density matrix
equations.

With the known time-dependent electric field Fx(z,t), the
system of equations (24), for each value of q, determines
the temporal evolution of the dressed electronic states (in the
Houston-function representation)

B = (β̂v,β̂c), (29)

where β̂v and β̂c are amplitudes to be in the VB and the CB,
respectively.

For such states, there are two types of initial conditions,
B(v) = (1,0) and B(c) = (0,1), which correspond to the evo-
lution of the dressed states of the VB and CB, respectively.
During this temporal evolution, all the dressed states B(v)(t)
are occupied by electrons, while all the dressed states B(c)(t)
remain empty. Although the dressed states B(v)(t) initially
correspond to the pure VB states, at later times they are a
mixture of the initial (unperturbed) VB and CB states.
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Such a mixing of the valence and conduction bands results
in polarization (i.e., an oscillating optical dipole-moment
density) of the system. This polarization’s vector has only
x components and is determined by the dressed states B(v)

only and has the following form:

Px(z,t)

= 1

2πa3

∫ π

−π

dq[B(v)†(q,z,t)Q̂(q,z,t)B(v)(q,z,t) + c.c.],

(30)

where Q̂ is a matrix with elements Qαα′—see Eq. (25). Such a
polarization should be substituted into the Maxwell equation
(5), which finally closes the system of equations (2)–(5),
(24), and (30), self-consistently describing the propagation
of ultrashort pulse through the dielectric system.

Similar system of equations were introduced to describe
the propagation of electromagnetic pulses through two-level
systems—see, e.g., Refs. 42 and 43. For a two-level system,
the corresponding system of equations is a combination of the
Maxwell equations and the Bloch equations. Our system of
equations, which describe the electron dynamics in the two-
band approximation, becomes similar to the Bloch equations
for two-level systems if the bandwidths, �α , are set to zero.
In contrast to the two-level (resonant atomic) systems, the
quantum evolution of a solid is significantly dependent on the
finite bandwidths—see Eq. (25)—that determine the adiabatic
phase, ea

h̄

∫
Fx(z,t)dt , associated with transitions between the

Wannier-Stark levels.

III. ADIABATIC STATES IN EXTERNAL ELECTRIC FIELD

A. Adiabatic states of coupled two-band system

The physical picture of the unfolding processes can be
understood in terms of the full adiabatic states of the coupled-
band system, which are different from those for the uncoupled
bands introduced in Sec. II B. Such full adiabatic states are
defined as solutions of Eq. (11) at a constant electric field Fx .
It is convenient to use the Wannier-Stark functions φαl(k) as
the basis functions and express an adiabatic state � in the
following form:

� =
∑
αl

�αlφαl(k). (31)

Then from Eq. (11) we obtain that the coefficients �αl satisfy
the following equation:

E�αl = (εα + leaFx)�αl + Fx

∑
α′l′

Zαα′J|l−l′ |(γα − γα′)�α′l′ ,

(32)

where E is the eigenenergy corresponding to �. This expres-
sion of the interband coupling in terms of the Bessel functions
is a characteristic feature of the tight-binding approximation.

The Wannier-Stark states are characterized by an integer
index l, which can be considered as the number of the
lattice site at which a given Wannier-Stark state is localized.
The second term in right-hand side of Eq. (32) describes
the coupling between the localized Wannier-Stark states of

different bands, which is defined by the function

J|l−l′|(γα − γα′) = J|l−l′|

(
�α − �α′

2eaFx

)
, (33)

which depends on the “distance” |l − l′| between the localized
Wannier-Stark states and on the difference of the bandwidths
�α − �α′ .

In contrast to the electron wave functions without external
electric field, which are delocalized Bloch states, the Wannier-
Stark states are localized along the direction of external electric
field. The localization length of the Wannier-Stark states, as
follows from Eq. (14), is

LWS ∼ �α

|eFx | . (34)

Due to the localized nature of the Wannier-Stark states,
we can conclude that the interband coupling is the strongest
for the nearest-neighbor Wannier-Stark states. Indeed, at a
strong electric field, ea|Fx | � �α (or, LWS � a), the interband
coupling has the largest value at �l = l − l′ = ±1 and
monotonically decreases with increasing �l. For instance,
assuming a realistic value �α = 4.5 eV, the strong electric
field is �0.2 V/Å.

Strong mixing of the Wannier-Stark states of different
bands takes place when the energy separation between the
corresponding Wannier-Stark states is comparable to the
interband coupling, i.e., under the condition of anticrossing
of the Wannier-Stark levels. From Eq. (15) it follows that the
anticrossing condition of two Wannier-Stark states belonging
to conduction and valence bands acquires the form

εc − εv = a|eFx�l|. (35)

Hence, for all members of the Wannier-Stark ladder, anticross-
ings occur simultaneously.

The magnitude of the anticrossing gap is determined by the
value of the interband coupling (33) at �l = (εc − εv)/|eaFx |.
Such coupling is strongest for the minimum value of �l = 1,
i.e., for the largest Fx .

With an increasing external field Fx , the two-band system
undergoes successive anticrossings corresponding to decreas-
ing values of �l [see Eq. (35)]: Fx ≈ (εc − εv)/|e|a�l. Note
that the approximate nature of this relation is due to the
fact that a strong coupling causes shifting of the anticrossing
points with respect to the values of Eq. (35) expected for the
weak coupling. The final and strongest (with the maximum
gap) anticrossing occurs at �l = 1 at an electric field Fx ≈
(εc − εv)/|e|a.

To illustrate relative strengths of the anticrossing gaps, we
show in Fig. 2 the energy levels of a finite two-band system
consisting of 50 crystallographic planes in the field direction;
correspondingly, there are 50 Wannier-Stark states in each
of the two (valence and conduction) Wannier-Stark ladders.
This energy spectrum is calculated from Eq. (32). Two sets
of anticrossings are clearly visible. These correspond to �l =
1 (at Fx ≈ 2.6 V/Å) and �l = 2 (at Fx ≈ 1.1 V/Å), i.e.,
the anticrossings of the nearest neighbor and the next-nearest
neighbor Wannier-Stark levels of the conduction and valence
bands. The largest gap at the �l = 1 anticrossing illustrates the
strongest interband coupling for the nearest-neighbor Wannier-
Stark states.
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FIG. 2. (Color online) Energy spectra of two-band system as a
function of external uniform electric field. The two bands correspond
to valence and conduction bands of silica with the energy gap of
9 eV. The band edges are shown by arrows, and anticrossings are
marked by red ovals. Only the strongest anticrossings, corresponding
to �l = ±1 and �l = ±2, are shown. The anticrossing gap is the
strongest for �l = ±1.

Within an optical half-cycle of the time-dependent field of a
strong optical pulse, the Wannier-Stark levels can experience a
number of anticrossings as the field increases (corresponding
to |�l| = Np − 1,Np − 2, . . . ,2,1, where Np is the number
of the crystallographic planes in the direction of the field),
and then the same number of the anticrossings occur as the
field decreases. The passage of any such an anticrossing
corresponding to a given �l will be adiabatic if h̄ω0 � �Eac

(where �Eac is the corresponding anticrossing splitting) and
diabatic in the opposite limiting case—see Sec. IV B.

B. Wannier-Stark levels in adiabatic field

The analysis of the previous section is based on the picture
of the Wannier-Stark states and anticrossing of such states
when the electric field is varied. Such analysis is valid only
if it is enough time for the time-dependent electric field to
form the Wannier-Stark states. To analyze the formation of the
Wannier-Stark states we consider in this section a single-band
system, which is characterized by zero offset energy, ε1 = 0,
and finite band width, �1.

The condition of formation of Wannier-Stark states can
be expressed in a following way. The physical origin of
Wannier-Stark localization and quantization is the interference
of electron packages, first accelerated by electric field and then
reflected from the periodic lattice potential. The motion of an
electron with 1D wave vector k, pointing along the direction
of electric field, is described by the following equation:

dk

dt
= e

h̄
F. (36)

The electron motion in reciprocal space is restricted by the
values of k within the first Briullien zone, i.e., −π/a < k <

π/a. Therefore, the wave vector k, after reaching the point
π/a following equation of motion (36), will be Bragg-reflected
to the point −π/a. Such reflections result in periodic Bloch

motion of electron in reciprocal space with the period

TB = 2π

ωB

. (37)

Therefore, the time of formation of Wannier-Stark states is
the period of Bloch oscillations, TB . This time should be
compared to the rate of change of electric field to determine the
applicability of description in terms of Wannier-Stark states.
For example, for F = 2 V/Å and a = 5 Å the period of Bloch
oscillations is TB ∼ 0.4 fs.

The wave functions, introduced in Sec. II B to describe
the electron dynamics, are the Houston functions (27), which
at zero electric field are Bloch functions and at finite electric
field depend on time t through the time-dependent wave vector,
kF (t). Even at constant electric field, these functions are not
stationary: they depend on t and contain information about the
stationary Wannier-Stark functions. To demonstrate this, we
perform a sliding Fourier transform of the Houston function
(27)

ψlq(x,t) =
∫ t+�t/2

t−�t/2
dt ′eilωB t ′

∫ ∞

−∞

dk

2π
e−ikx�(H )

q (k,t ′). (38)
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FIG. 3. (Color online) Driving electric field and localized elec-
tronic states. (a) Electric field of an optical pulse with frequency
h̄ω0 = 1.5 eV and pulse length τp = 4 fs as a function of time
t . The electronic states were computed at points in time 1 and 2
with instantaneous fields F = 2.1 VÅ and F = 0.6 VÅ, respectively,
marked by the red dots. (b) Sliding Fourier transform (38) of the
Houston functions (27) calculated for instantaneous field F = 2.1 VÅ
at the energies of the Wannier-Stark ladder El = lh̄ωB , where l is
integer. The curves are displaced vertically according to El . The red
and black colors denote the VB and CB ladders, correspondingly.
The width of the time window of the sliding Fourier transform is
�t = 0.5 fs. (c) The same as (b) but for F = 0.6 VÅ.
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In Fig. 3, we show the driving field F (t) as a function of
time t [panel (a)] and the time-dependent wave functions
ψlq(x,t) for q = 0 (i.e., originating from the � point of the
Brillouin zone) for two moments of time t : when field F near
its maximum, F = 2.1 V/Å [panel (b)] and at the moment
when F is relatively low, F = 0.6 V/Å [panel (c)]. In all cases,
these wave functions are well-defined Wannier-Stark localized
states. For a strong field [Fig. 3(b)] their localization is much
stronger than for a moderate field [Fig. 3(b)], as expected.
Also, the spatial width of these wave functions in the CB is
significantly greater than in the VB because the CB energy
width is much greater, in accord with Eq. (14).

In such a way, we can assume that for F � 1 V/Å the
description of electron dynamics in terms of Wannier-Stark
states is applied. This is the range of electric field, within which
the strong anticrosssings of Wannier-Stark levels of different
bands are expected.

IV. RESULTS AND DISCUSSION

A. Enhancement of reflection of the optical pulse

A strong optical pulse propagating through a dielectric film
causes nonlinear modification of its electronic system, which
through the dielectric polarization Px changes the propagation
of optical pulse itself self-consistently. Consequently, the
reflectance of the strong pulse should significantly depend
on the intensity of the pulse, i.e., on its peak electric field, F0.

Consider a moment of time tf when the reflected and
transmitted pulses are well separated as is shown in Fig. 4
for a 100 nm dielectric film. Both the pulses, reflected and
transmitted, have the shapes similar to that of the incident
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E
le

ct
ri

c 
fi

el
d 

(V
/ Å

)

z (nm)

FIG. 4. (Color online) Spatial distribution of the electric field of
the pulse at a moment of time when the laser pulse just passed through
the dielectric film. The well-formed transmitted and reflected pulses
are clearly visible. The pulses propagate away from dielectric film,
which is shown schematically by red line. The peak electric field of
the incident pulse is 2.4 V/Å. The thickness of the dielectric film is
100 nm. The reflectance of the pulse is R = 19%.

pulse and propagate away from the film. Reflectance R, which
is defined as the reflected fraction of the optical pulse energy,
is calculated from the following expression:

R =
∫ 0
−∞ dz|Fx(z,t = tf )|2∫ 0
−∞ dz|Fx(z,t = 0)|2

, (39)

where z = 0 is the coordinate of the left boundary of the
dielectric film. It is assumed that the incident pulse is generated
at t = 0 far away from the film.

In a similar way, we can calculate absorption of the optical
pulse as the fraction of its absorbed energy. For the pulse
intensity P not too high, i.e., for the intensity smaller than the
breakdown threshold intensity, PB ≈ 2.5 × 1014 W/cm2 for a
few-femtosecond pulse, our calculations indicate (results not
shown) that the absorbance A of the pulse in a thin dielectric
nanofilm is small, A � 1–2%. This is much smaller than the
reflectance of the pulse, R ∼ 20%. This fact suggests that the
interaction of the ultrashort strong pulse with the dielectric is
reversible, nondamaging.

The reflectance R depends also on the thickness h of
the film, which is due to interference of the transmitted
optical wave with that reflected from the back boundary
of the film. In Fig. 5(a), the dependence of the reflectance
on the thickness of the film is shown for two pulses with
different intensities. The reflectance is small for a small
thickness of the film, and it reaches its maximum value at

F0 = 0.1 V/Å

F0 = 2.4 V/Å

Theory

h =  100 nm

Peak electric field,   F0 (V/Å)
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Kerr effect

FIG. 5. (Color online) (a) The reflectance of the laser pulse as a
function of the thickness of the silica film is shown for two pulses
with high (black line) and low (red line) intensities with corresponding
peak electric field values F0 = 2.4 V/Å and F0 = 0.1 V/Å (red line).
(b) The reflectance of the laser pulse as a function of the peak electric
field of the pulse is shown for the 100 nm dielectric film (black line).
A reflectance prediction from the Kerr effect (red line)—see the text:
Eq. (40) and below.
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a finite thickness h, which is a behavior characteristic of a
very thin Fabry-Pérot interferometer (this is a part of the
first Fabry-Pérot oscillation). This maximum is reached at
h ∼ λ/neff , where neff is the effective refractive index of
the film. In this maximum, an analytical solution of the
Maxwell equations yields the following expression for the
reflectance:44

Rmax ≈
(

1 − n2
eff

1 + n2
eff

)2

. (40)

The reflectance shown in Fig. 5(a) increases fromR = 13%
to R = 25% when the field amplitude increases from F0 =
0.1 V/Å to F0 = 3.5 V/Å. This corresponds to the increase of
the effective index (40) from neff = 1.46 to neff = 1.73, i.e.,
the effective index change is �neff = 0.2. To compare, with the
known Kerr constant for silica45 n2 = 3.2 × 10−16 cm2/W
and the peak pulse power P0 = 1.6 × 1014 W/cm2 (corre-
sponding to F0 = 3.5 V/Å), the Kerr-effect increase of the in-
dex would have been �neff = 0.05, i.e., significantly less than
predicted by the present theory—see Fig. 5(b) where the black
curve displays the theory prediction, and the red one shows
the Kerr-effect reflectance. This implies that in high fields the
dielectric (silica) becomes much more polarizable (“softer”)
than expected from the low-field behavior. This softening is
interpreted as a precursor to the adiabatic metallization,11,13

which is incomplete because the present field is too fast to be
adiabatic.

In Fig. 6 we display polarization relative to the maximum
pulse field χeff = Px/F0; note that εeff = max[4π |χeff|] is the
corresponding contribution to effective maximum permittivity.
This relative polarization is computed for the midplane of a
h = 100 nm nanofilm and for the optical pulse with peak value
of F0 = 2.4 V/Å. This effective permittivity contribution is
significant, εeff ≈ 2.5, which again implies the field-induced
softening of the dielectric.

The increase of the refractive index in a strong external
electric field of the optical pulse is due to generation of
non-linear internal polarization, Px , of the system. Such
polarization is determined by the nonlinear mixture of the
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FIG. 6. (Color online) Time-dependent relative polarization
χeff = Px/F0 for silica film of h = 100 nm thickness calculated from
Eq. (30) for laser pulse with the amplitude of 2.4 V/Å (black curve).
Electric field of the pulse as a function of time (red curve). Both the po-
larization and the field are calculated in the midplane of the dielectric
film.
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FIG. 7. (Color online) Fragment of the adiabatic energy levels
of the nanofilm as function of the applied electric field. The vertical
arrows indicate allowed dipole transitions in a near-infrared/visible
frequency region. The arrows at the anticrossing points show
pathways of the passage of the anticrossings. The open (filled) circles
denote empty (filled) states. The line color codes the order of levels
in their energy. (a) Diabatic passage: at the anticrossing point the
states with the given quantum numbers preserve their population. The
crossed arrows indicated the directions in which the population is pre-
served. (b) Adiabatic passage: the population is conserved for both the
lower and upper levels as indicated by the curved arrows. The bold red
arrow shows the strongest transition that occurs between the parallel
levels (terms) corresponding to the Wannier-Stark states localized at
the same lattice site, one of which is empty and the other populated.

states of the valence and conduction bands. Such a mixture
can be described in the basis of the Wannier-Stark states. In
this basis, the interband coupling is a nonlinear function of
electric field and is the strongest near the anticrossing points
of the Wannier-Stark energy ladders.

To illustrate this effect, consider the adiabatic levels of
the system (see Sec. III) shown in Fig. 7 where we display
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a small fragment of the band diagram of Fig. 2 in an
intermediate region of fields along with interband dipole
transitions denoted by the vertical arrows and population of the
filled and empty states indicated by filled and empty circles,
respectively.

Figure 7(a) illustrates a case of the diabatic passage of the
level anticrossings, where this passage occurs so rapidly that
these anticrossings are ignored by the system. The condition
of the diabatic passage is δ � 1 where δ = h̄ω/�ac is the so-
called adiabatic parameter, and �ac is the anticrossing splitting
energy. In Fig. 7(a), the crossed arrows indicate the direction
in which the populations and wave functions are preserved
through the anticrossings. As one can see from the energy
scale, in the vicinity of the anticrossings, there are allowed
transitions (i.e., those between the empty and filled levels) in
the near-infrared/visible (nir-vis) spectral region, i.e., within
the spectral width of the excitation pulse. These transitions are
responsible for the polarization discussed above in conjunction
with Fig. 6. As one can see, all the transitions in this case occur
between the terms that are not parallel, which in accord with
Eq. (35) implies that the corresponding Wannier-Stark states
are localized at different lattice sites. Given that at such fields
these states are strongly localized (cf. Fig. 3), the overlap of
the wave functions of such states localized at different sites
is relatively small. Therefore the dipole transitions between
them are suppressed and the corresponding polarization is not
large. This appears to be the case for the conditions under
consideration.

The opposite limiting case of the adiabatic (i.e., for δ � 1)
passage of the anticrossings is illustrated in Fig. 7(b). In
this case, the population stays on a continuous line (term),
as the curved arrows indicate, while the wave functions are
exchanged when an anticrossing is passed. Such an exchange
implies transfer of the electron population in space between
different lattice sites. As a result, there are strong transitions
between parallel terms, i.e., between the Wannier-Stark states
localized at the same lattice site. One such a transition
is indicated by the bold red arrow in Fig. 7(b). These
transitions, which appear due to adiabatic population transfer,
are analogous to those appearing due to metallization of
dielectric nanofilms.11,13

In Fig. 8, we show the temporal dynamics of the incident
pulse field (black curve) and that of the field inside the
dielectric (at the mid plane of the nanofilm) shown by the
red curve. This internal field is of importance since it self-
consistently determines electron dynamics in the dielectric.
This field is suppressed compared to the field of the incident
pulse due to reflection from the dielectric-vacuum interface.
This reflection is enhanced because of the polarizability of the
dielectric is increased due to the enhanced nonlinear effects
both in the diabatic and adiabatic pathways—see above the
discussion of Fig. 7. Note that the internal field pulse (the
red line) is almost (but not perfectly) symmetric with respect
to its maximum point, which implies that the excitation of
the dielectric by the strong field is almost reversible: very
little population of the CB is left behind after the pulse ends.
Nevertheless, there is some small but appreciable asymmetry
of the internal field pulse with respect to its maximum: on the
trailing edge the internal field is somewhat smaller compared
to that at the leading edge implying that a relatively small
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FIG. 8. (Color online) The electric field of the incident optical
pulse (black line) and the electric field at the midpoint of the dielectric
film (red line) are shown as functions of time. The graphs are shifted
in time so that the maxima of two dependencies occur at the same
moment of time. The thickness of the film is 100 nm and the amplitude
of the laser pulse is F0 = 2.4 V/Å.

population is left behind by the strong pulse—see also below
Fig. 9 and its discussion.

B. Dynamics of electron system

The electric field of the optical pulse induces mixing of
the electronic states of the VB and CB. The amplitudes for
an electron to be in the VB or CB is given by projection of
its exact time-dependent wave function onto the unperturbed
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F0 = 2.4 V/Å

FIG. 9. (Color online) The time-dependent conduction band
population, defined by Eq. (41), is shown for dielectric film with
the thickness of 100 nm. The amplitude of the pulse is 2.4 V/Å. The
electric field at the midpoint of the film is also shown. There is a
correlation between the the conduction band population and electric
field of the pulse. There is also small residual population, illustrating
that the electron system almost returns to the original state after the
pulse passes through the film. The interband dipole matrix element is
Zvc = 3.0 eÅ.
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states of the corresponding band (VB or CB). The occupied
electron states, which are initially the valence band states, are
represented by wave functionsB(v) = (β̂(v)

v ,β̂(v)
c ) [see Eq. (29)]

and have both the VB and CB components. The CB occupation
Nc(t) is given by

Nc(t) =
∫

dz

∫
dq

∣∣β̂(v)
c (q,z,t)

∣∣2
, (41)

where the integral over momentum q is extended over the first
Brillouin zone, and the z integral is extended over the nanofilm
thickness. The conduction band population of Eq. (41) is a
fundamentally observable quantity, though in practice it may
not be easily measurable. Physically, Nc determines such a
particularly important effect as Pauli blocking of the VB to
CB transitions.

The occupationNc of the CB states is shown in Fig. 9 for the
interband dipole parameter Zvc = 3.0 eÅ and amplitude of the
optical pulse F0 = 2.4 V/Å. The conduction band occupation
Nc is clearly behaving as a function of the instantaneous elec-
tric field of the pulse, more precisely of |F (t)|. This occupation
has its maximum values at the maxima and minima of the pulse
electric field. In addition to a smooth time-dependent part of
Nc, which follows |F (t)|, there are also fast oscillations with
frequency close to the �g/h̄, where �g is the bandgap. There
is also a small, ≈0.5%, residual population of the CB after the
pulse passes through the film. This smallness of the residual
population is due to the circumstance that both the pure dia-
batic and adiabatic passages of the anticrossings do not leave
the residual population. In our case, this residual population,
as well as the fast population oscillations, are likely to be due
to impure diabatic passages (i.e., the passages that are fast but
not infinitely fast). Note that oscillations of a similar nature
are also seen in the polarization and internal field—see Fig. 6.

Earlier in this section, we considered the electron dynamics
for a fixed interband matrix element Zvc = 3 eÅ. There is a
nontrivial dependence of the electron dynamics on this matrix
element that we will discuss below.

In Fig. 10(a), results are shown for a relatively low dipole
interband coupling, Zvc = 1.0 eÅ. For an anticrossing at �l =
2 (the next-nearest neighbor), the anticrossing splitting (gap)
is very small �ac ≈ 0.03 eV; correspondingly δ � 1, and the
passage is extremely diabatic. For the anticrossing at �l = 1
(the nearest neighbor anticrossing, which occurs last as the
electric field increases), �ac ≈ 1 eV. With h̄ω0 = 1.5 eV, δ ∼
1, and the passage of this last anticrossing is intermediate
between diabatic and adiabatic; consequently, one can expect a
significant residual CB population to occur (see also discussion
below in Sec. V).

The corresponding dynamics of the CB population for
this low interband coupling matrix element Zvc = 1.0 eÅ
is displayed in Fig. 11(a). As we see, both the maximum
population (at t ≈ 2 fs) and the residual CB population (for
t > 6 fs) monotonously increase with the excitation field
amplitude F0. The CB population (both maximum and resid-
ual) becomes very large, Nc ≈ 20–40%, for F0 � 2.8 V/Å
leading to an increased deposition of energy and possible
dielectric breakdown.

The adiabatic levels for a larger dipolar coupling, Zvc =
3.0 eÅ, are illustrated in Fig. 10(b). Note that anticrossings
for a given �l are shifted to higher fields with respect to
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FIG. 10. Adiabatic energy spectra of two-band system is shown
as a function of external electric field for different values of Zvc:
(a) Zvc = 1.0 eÅ, and (b) Zvc = 3.0 eÅ. The two bands are the VB
and CB of silica with the energy gap �g = 9 eV. This two-band
system is finite and each band consists of 50 energy levels. The
anticrossing points with �l = 1 and �l = 2 are shown.

the case of low dipolar coupling [cf. Fig. 10(a)]. For the
anticrossing at �l = 2, �ac ≈ 0.3 eV and δ ≈ 5; thus the
passage of this anticrossing is mostly diabatic. In contrast,
for �l = 1, �ac ≈ 5 eV and δ ≈ 0.3; hence, this anticrossing
is mostly adiabatic. However, it occurs at a very high field
F0 = 3.5 V/Å where electric breakdown is likely to occur
even for such short excitation pulses [see also below in the
discussion of Fig. 12(b) and Sec. V].

The dynamics of the CB population for the case of large
dipolar coupling, Zvc = 3.0 eÅ, is illustrated in Fig. 11(b).
The most dramatic feature is the sharply reduced residual
population as compared to Fig. 11(a), Nc < 2% for all fields.
This indicates high reversibility of the excitation in this case.
The peak population is reached close to the maximum of
the excitation pulse (t = 0); its value at the highest field is
significantly reduced comparing to the case of weak coupling.
Physically, this counterintuitive behavior (the reduction of the
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FIG. 11. (Color online) Time dependent CB population is shown
for different amplitudes of the laser pulse and different values of
parameter Zvc: (a) Zvc = 3.0 eÅ and (b) Zvc = 1.0 eÅ. The numbers
next to the lines are the corresponding amplitudes of the laser field.
The thickness of the film is 100 nm. At Zvc = 1.0 eÅ (b) there is
a large residual population of the conduction band, while at Zvc =
3.0 eÅ (a) the residual population of the conduction band is small.

residual and maximum populations with respect to the case
of weak coupling) is related to fact that the WS anticrossings
occur at a higher field, and the one within the range of fields
considered (�l = 2) is highly diabatic, which prevents a large
population transfer.

The dependence of the CB population Nc on the dipolar
coupling constant Zvc at a fixed pulse amplitude F0 =
2.4 V/Å is displayed in Fig. 12(a). In the initial part of the
excitation pulse (t < −1 fs), i.e., for low excitation fields, the
population Nc monotonously increases with Zvc, as intuition
would predict. At the pulse maximum, the dependence on
Zvc saturates but still is monotonous. In contrast, the residual
(t > 6 fs) population dependence on the dipolar coupling is
nonmonotonous. For a low coupling, Zvc = 0.5 − 1 eÅ, Nc

increases with Zvc, which is characteristic of the diabatic case
where the coupling is mostly perturbative. Counterintuitively,
with further increase of the coupling, Zvc > 1 eÅ, the residual
population decreases with increase of Zvc. This is related to
the fact that only the last anticrossing (the one with �l = 1),
which can have a significant anticrossing gap, shifts to larger,
unattainable fields. The anticrossing gaps for �l � 2 are very
small and, consequently, the corresponding dynamics is deeply
diabatic. This deeply diabatic dynamics is mostly perturbative
and contributes little to the population transfer.
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FIG. 12. (Color online) Population of the CB versus time and
peak electric field. The thickness of the film is 100 nm. (a) Time
dependent CB population is shown for a given amplitude of the
laser pulse, F0 = 2.4 V/Å, and different values of parameter Zvc

as indicated. (b) The maximum CB population as a function of the
peak electric field F0 for two values of the interband dipole matrix
element Zvc = 1.0 eÅ (red curve) and Zvc = 3.0 eÅ (black curve).

The CB population Nc at its maximum value during the
pulse determines the heat production and damage of the
dielectric. This important quantity is displayed in Fig. 12(b)
against the peak electric field for two typical values of the
interband dipole element Zvc. The free electron gas populating
CB is characterized by the ratio η = RT F /aB , where RT F is
the Thomas-Fermi screening radius and aB is the Bohr radius,

RT F = 2e
√

m∗
c (3n)1/6

π1/6h̄
√

ε
, (42)

aB = εh̄2

m∗
ce

2
, (43)

where n = 2Nc/a
3 is the maximum CB electron density, ε ≈

2.3 is the silica permittivity, and m∗
c is the electron effective

mass for the CB, whose experimental value is46 m∗
c ≈ 0.86m.

The electron gas in the CB possesses metallic behavior
for η � 1 which means that excitons are screened out, and
the electrons behave as a free gas. Judging from Fig. 12(b),
such a behavior sets on for F0 � 2.5 V/Å (irrespectively of
Zvc) where Nc � 0.15 and, correspondingly [see Eqs. (42)
and (43)], η � 1.2. Thus, F0 ≈ 2.5 V/Å is the breakdown
field amplitude, which corresponds to the peak pulse intensity
≈1.7 × 1014 W/cm2.

V. CONCLUDING DISCUSSION

Let us briefly summarize fundamentals and main results of
this article. One of the main points is nondamaging character
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and reversibility of the interaction of intense and ultrashort
laser pulses with a dielectric. These are determined by the
maximum and residual electron population, Nc, of the CB—
see Figs. 11 and 12. In these figures, we can see that the
maximum CB population grows dramatically to ∼20–40 %
for the peak external field F0 = 2.4–3.6 V/Å corresponding
to the peak intensity ∼1.5 × 1014–3.4 × 1014 W/cm2. These
numbers are rather reliable because they relatively weakly
depend on the interband dipole matrix element Zvc whose
exact value is not precisely known. As we have shown at the
end of Sec. IV B, it is likely that the metallic behavior of
the electron gas in the CB and, correspondingly, breakdown
occur for the peak field F0 � 2.5 V/Å or peak pulse intensity
�1.7 × 1014 W/cm2.

Previously it has been predicted25 that for significantly
longer 16-fs pulses with a twice higher carrier frequency
of 3.1 eV the breakdown intensity is ≈1015 W/cm2. This
is significantly higher than predicted by our calculations
for ≈4-fs pulses of 1.55 eV frequency. This difference is
even more significant if one keeps in mind that the damage
threshold should considerably decrease with increasing the
pulse length and carrier frequency. Notice that our coherent
approach is not applicable for such long pulses as 16-fs due
to importance of electron-electron scattering at such long
times.

The effective reversibility of the pulse-film interaction is
mostly determined by the residual CB population after the end
of the pulse: such a low population implies that the next pulse
would feel almost the same system as the initial one. One has
to keep in mind that the residual CB population decays due to
radiative interband transitions and lives for a very long time
∼100 ps,47 which is many orders of magnitude longer than the
characteristic times of the process of excitation and dephasing
relaxation considered in our article. In contrast to the maximum
CB population, the residual one very significantly depends
on the interband dipole matrix element Zvc—cf. Figs. 11(a)
and 11(b) and also see Fig. 12. Interestingly enough, the
dependence on Zvc is nonmonotonic: it is increasing for
Zvc � 1 eÅ and sharply decreasing for Zvc � 1 eÅ.

This highly nontrivial dependence is due to the fact that the
residual population of the conduction band is most efficiently
created in the case intermediate between the pure adiabatic
and diabatic regimes where the adiabatic parameter δ ∼ 1. In
fact, in the extreme adiabatic case (δ � 1), the population at
the leading edge of the pulse is very efficiently transferred
to the CB at the level anticrossing point, just as it happens
in the process of the adiabatic metallization.11 However, at
the trailing edge the population transfer at the anticrossing
point occurs in the reverse direction, to the VB, resulting
in a very low residual CB population.13 Such reversibility
is generally characteristic of adiabatic processes. In the
opposite limiting case of a very diabatic process (δ � 1),
the anticrossings are largely ignored by the system, and very
little population transfer occurs. Only in the intermediate
case, δ ∼ 1, there is a significant residual population of the
CB as we have already discussed above in conjunction with
Fig. 10.

A major observable quantity in our work is reflectance of
the strong ultrashort pulses from the dielectric nanofilm. The
predicted reflectance of a pulse increases with the pulse peak

field F0 [Fig. 5(b)] much stronger than the perturbative theory
of Kerr effect suggests. This implies that the response of the
nanofilm is deeply nonperturbative even in the range below the
presumed breakdown threshold F0 ≈ 2.5 V/Å. Interestingly
enough, the waveform of the reflected pulse is almost identical
to that of the incident pulse. This is a consequence of the
reversibility of the pulse interaction with the nanofilm under
our conditions; if this interaction were not reversible, e.g.,
if a significant electron population were accumulated in the
CB toward the end of the pulse, then the trailing edge of the
reflected pulse would be significantly higher than the leading
edge due to a plasma-like response.

The underlying cause of the high reflectivity is the “soft-
ening” of the dielectric, i.e., a significant increase of its
polarizability, in the strong field, which is illustrated in Fig. 6.
This softening is significant: the corresponding contribution
to the maximum permittivity is large, εeff = 4π max[|χeff|] ≈
2.5, which causes more than doubling the permittivity of
silica. This is related to the allowed low-frequency transitions
between the adiabatic energy levels of the system in the
vicinities of the anticrossings of the Wannier-Stark levels
shown in Fig. 7.

The phenomena described above in this article are driven
by the instantaneous pulse field rather than its intensity or field
integral (“area” of the pulse). This points toward a fundamental
possibility of ultrafast (with bandwidth comparable to the
optical frequency) field effect devices based on dielectrics
similar to but much faster than the field effect transistors
(FETs)48–50 fabricated from the much “softer” semiconduc-
tors. To explain this analogy, in the case of the FET, the
charges at the gate electrode by their electrostatic field attract
the minority carriers causing the adjacent channel of the FET
to conduct. Similarly, in our case the instantaneous electric
field of the light wave may be thought of as inducing the
appearance of the carriers (electrons in the previously empty
conduction band and the respective holes in the valence band),
which causes the dielectric to conduct.

To conclude, we have described a number of highly
nonlinear (nonperturbative) phenomena in dielectric (silica)
nanofilms subjected to nearly single-period strong optical
pulses whose field can be just below the predicted breakdown
threshold of ∼2.5 V/Å. These results show possibility of
fundamental phenomena and applications based on field
control of dielectrics very much similar to the phenomena
occurring in semiconductors used in field-effects transistors.
The strong but short optical fields lead to the optical-electric
softening of the dielectrics. These phenomena are defined by
the instantaneous optical field rather then the pulse intensity or
its field integral. Thus these phenomena are among the fastest
in optics.
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