The Study of the Temperature Dependence of Photoresponse in Superlattice Infrared Photodetectors

<u>J. H. Lu</u>, K. J. Wu, K. J. Hsieh, C. H. Kuan Graduate Institute of Electronics Engineering, National Taiwan University

C. W. Yang, S. L. Tu Opto Tech Corporation

J. Y. Feng, T. S. Lay Institute of Electro-Optical Engineering, National Sun Yat-Sen University

Outline

Introduction

SLIP with a single barrier

- Temperature Dependence of Photoresponse
- The Effect of Fermi level
 barrier thickness
 applied bias
- SL with MQWs
 - Design Principles
 - Temperature Dependence of Photoresponse

Summary

Introduction

TE and TAT depends on temperature and applied bias.

The electron transport through the barrier can be drift or ballistic depending on: 1. Barrier thickness

2. The applied bias

Sample Structure: SL with a single barrier

Well / Barrier : GaAs / Al_{0.32}Ga_{0.68}As 6.5 nm / 3.5 nm **Doping Density** : 5x10¹⁷ cm⁻³ in well Single Barrier :

Al_{0.25}Ga_{0.75}As

The temperature dependence of response

The effect of Fermi level

$$f_F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

The calculated Fermi-Dirac Distribution

$$f_{F,\operatorname{High T}}(E) - f_{F,\operatorname{20 K}}(E)$$

As temperature rising, the electron distribution of the state lower (higher) than the Fermi level decreases (increases), which leads to the decrement (increment) of the short (long) wavelength response.

The effect of barrier thickness

The effect of the applied bias

The effect of the applied bias

Sample structure: SL with MQWs

Doping Density : 4x10¹⁷ cm⁻³ in SL and MQWs

The graded barrier thickness is 60 nm \rightarrow electrons can transport ballistically The doping density is 4e17 cm⁻³ \rightarrow the lower Fermi level causes the lower decrement of short wavelength response The graded barrier height is raised \rightarrow all electrons have to go through the barrier by tunneling and depends on the applied bias

Photoresponse at 0.5 V

Band diagram at same bias different T

Summary

- The factors such as the doping density, the barrier height and thickness, and the applied bias will affect the temperature dependence of photoresponse in SLIP.
- The fitting curves based on these factors are consistent with the experimental results.
- According to those factors, we design a structure of the combination of SL and MQWs to achieve the better temperature effect of photoresponse. It shows the temperature-enhanced photoresponse and achieves the broadband response under low bias and high temperature operation, which provides the flexibility for the hightemperature applications.