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Introduction
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Sample Structure:
SL with a single bartier

photocurrent

Well / Barrier :
GaAs / Al 5,Ga, gsAS
6.5nm /3.5 nm

Top 15-period SL
contact Doping Density :

single barrier

5x1017 cm3 in well

Bottom

. _ _ contact
single barrier thickness: Single Barrier :

sample A =300 nm
sample B = 50 nm Alg 25G8g 75AS




‘The temperature dependence of response
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The thin-barrier sample has the larger responsivity under the same
electric field.
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The effect of Fermi level
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The calculated Fermi-Dirac Distribution
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As temperature rising, the electron
distribution of the state lower (higher)
than the Fermi level decreases
(increases), which leads to the
decrement (increment) of the short
(long) wavelength response.




The effect of barrier thickness
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The effect of the applied bias
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B The zero-crossing point
shifts to the long-wavelength
side as bias increasing.

B The increment grows as
bias increasing.
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The effect of the applied bias
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N(E) electron distribution at the state in
M,, which is inversely proportional to
number of the states below that state.

S,;,4 the scattering in the barrier, which
is proportional to the applied bias.
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Sample structure: SL with MQW's

Doping Density : 4x10'” cm=3 in SL and MQWs

Top
contact

15-period SL
AIUFEQGHU.?]ASI’GHAS (4#’6 ﬂl]l)

A

60nm

50-period MQWs

Al Gag 79As/GaAs (50/6 nm)

Bottom
contact
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Design Principles

= The graded barrier thickness is 60 nm
— electrons can transport ballistically
= The doping density is 4e17 cm™3

— the lower Fermi level causes the lower
decrement of short wavelength response

= The graded barrier height is raised

— all electrons have to go through the barrier by
tunneling and depends on the applied bias
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‘Photoresponse at 0.5V
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The temperature-enhanced
response from MQWs is
attributed to the thermally
assisted tunneling.
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Band diagram at same bias different T
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Summary

The factors such as the doping density, the barrier height
and thickness, and the applied bias will affect the
temperature dependence of photoresponse in SLIP.

The fitting curves based on these factors are consistent
with the experimental resuilts.

According to those factors, we design a structure of the
combination of SL and MQWs to achieve the better
temperature effect of photoresponse. It shows the
temperature-enhanced photoresponse and achieves the
broadband response under low bias and high temperature
operation, which provides the flexibility for the high-
temperature applications.
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