Room temperature intraband photodetection at 1.3-1.5 µm in self assembled GaN/AIN quantum dots *A. Vardi, G. Bahir* Department of Electrical Engineering Technion-Israel Institute of Technology, Haifa, Israel

M. Tchernycheva, L. Doyennette, L. Nevou, and F. H. Julien

Institut d'Electronique Fondamentale,

Universite Paris-Sud,

Orsay, France.

F. Guillot and E. Monroy Equipe mixte CEA-CNRS-UJF Nanophysique et Semiconducteurs, Grenoble, France.

Outline

- Motivation
- Introduction
- Sample Growth
- Spectroscopy
- Devices
- Summary

Motivation

• The wide band-gap and the large band-offsets of the III-nitride system offers prospects for tunable intraband devices operating at telecommunication wavelengths at room temperature.

Bandgap difference $\sim 2.7 eV$

Lattice mismatch ~2.4%

Very fast relaxation time

in the range 100-200 fs

Future applications: QCL, Modulators, QDIPs

Polarization fields

Polarization fields

Strained

In case of pseudomorphic biaxial strain

$$P_{pz} = P_{pz,z} = e_{33} \in_{zz} + e_{31} (\in_{xx} + \in_{yy})$$

The internal field E is found by solving: $\vec{\nabla} \cdot \vec{D} = 0$

where:
$$\vec{D} = \varepsilon \vec{E} + \vec{P}$$
, $\vec{P} = \vec{P}_{pz} + \vec{P}_{sp}$

AlN/GaN Heterostructure

Growth along [0001] axis will emphasize the interplay between the polarization effects and the quantum confinement effects

Red Shift

Confinement

Samples Growth

Stranski Krastanow (SK) growth mode.

Self assembled QD, 2-3ML wetting layer (WL).

Mono layer (ML)= $2.5[A^{\circ}]$.

Dot Morphology

The dots have the shape of hexagonal truncated pyramid with $\{1\overline{1}03\}$ facets.

V. Chamard et al, PRB 69,125327(2004)

TEM Characterization

Big Dots

Dot height: 4±1nm Base diameter: 15±5nm

Small Dots

Dot height: 2±1nm Base diameter: 15±10nm

AFM Characterization

The areal density of the dots is in the range of 10^{11} - 10^{12} cm⁻² for all of the samples

small dots, density:10¹²cm⁻²

PL Characterization

Small Dots

GaN on Sapphire substrate

AlN on Sapphire substrate

Measured at 12K, using xenon lamp's light, dispersed by 0.275m monochromator. Excitation wavelength: 251nm.

Evaluation of the Internal Field

Intraband Transitions

Transitions between states with different parity along the polarization axis (of the light) are preferred.

Growth direction transition

In-plane transitions

Рх

These transitions exhaust most of the ground state - Oscillator strength

Vasanelli et al, Phys. E 11 pg. 41 (2001)

Nextnano simulation

Effective-mass solution in 3D, including strain and polarization effects

Nextnano Simulation

Ζ

Х

Effective-mass solution in 3D, including strain and polarization effects

Measured at room temperature, using frequency doubled Argon Laser (244nm), pump power 200mW.

The dots exhibit absorption in the range of 1-2% per reflection which corresponds to $\alpha \sim 10^3 \text{ cm}^{-1}$.

$$f_{PzS} \sim 10^{-3} \rightarrow \alpha_{PzS} = \frac{\pi \hbar N_d n_{op} e^2}{m^* \varepsilon \varepsilon_0 c} \frac{\Gamma}{\left(\hbar \omega - \hbar \omega_{PzS}\right)^2 + \Gamma^2} \left(N_s - n_{Pz}\right) f_{PzS}$$

one electron per dot

Vertical Device

Interdigitated structure, 10 fingers: 800 µm long, 10 µm spacing

AlN

Near IR (NIR) Photocurrent

Measured at Room Temperature, Using FTIR with Tungsten-Halogen source.

Submitted to APL

Near IR (NIR) Photocurrent

Measured at Room Temperature, Using FTIR with Tungsten-Halogen source.

Vardi APL 2006

PL Vs Intraband Absorption and Photocurrent in Lateral Device

Temperature dependence

The photocurrent and the blue shift of PC with respect to absorption decrease with temperature lowering

Model assumptions

- 1. The inhomogeneous broadening of the PL spectra is due to dot size distribution.
- Dots with Pz above the WLGS can contribute the photocurrent with high efficiency. Dots with Pz below the WLGS can contribute too, but with low efficiency.
- 3. Fermi level is above the absorption peak but below the WL cutoff.
- 4. Constant number of electrons in the dots

Lateral Device 1D Eight band K·P model

Pseudomorphic biaxial strain:

$$\in_{xx}, \in_{yy} = \frac{a_{GaN} - a_{AIN}}{a_{AIN}}, \quad \in_{zz} = -2\frac{C_{13}}{C_{33}} \in_{xx}$$

Periodic boundary conditions:

$$\begin{split} E_{\scriptscriptstyle W} &= -\frac{\Delta P}{\varepsilon} \cdot \frac{L_{\scriptscriptstyle B}}{L_{\scriptscriptstyle W} + L_{\scriptscriptstyle B}}, \quad E_{\scriptscriptstyle b} = \frac{\Delta P}{\varepsilon} \cdot \frac{L_{\scriptscriptstyle W}}{L_{\scriptscriptstyle W} + L_{\scriptscriptstyle B}} \\ \Delta P &= P_{\scriptscriptstyle W} - P_{\scriptscriptstyle B} \end{split}$$

Lateral Device 1D Eight band K·P model

Lateral Device 1D Eight band K·P model

The inhomogeneous broadening of the PL spectra is due to dot size distribution.

Dots with Pz above the WL can contribute the photocurrent with high efficiency. Dots with Pz below the WL can contribute too, but with low efficiency.

Fermi level is above the absorption peak but below the WL cutoff in the S band.

Lateral device PC as function of temperature 1D Eight band K·P model calculation

Peak position decreases with temperature

Mid IR (MIR) Photocurrent

MIR spectrum can be characterized using photocurrent spectroscopy in normal incident, but in order to characterize the polarization of the transitions, the measurement must be taken in wedge configuration.

MIR Photocurrent

Measured at 12K, using FTIR with glow-bar source.

MIR Photocurrent

Summary

- Using infrared spectroscopy, we study the conduction band energy levels in GaN\AlN QDs.
- We report on a successful fabrication of telecommunication wavelength photodetector based on intraband transition operating at room temperature.
- A quantitative explanation to the lateral detector photocurrent temperature and dots size dependence was presented.