Research topics at Thales Research and Technology Small pixels and 3rd generation applications

<u>Alexandru Nedelcu</u>, Eric Costard, Philippe Bois, Xavier Marcadet ATL III-V Lab, RD128, 91767, Palaiseau, France Thales Research and Technology, RD128, 91767, Palaiseau, FRANCE

TODAY CHALLENGES

large FPA arrays, small pixel size

- increased resolution
- higher yield

new (3rd generation) applications

- true microscan
- multi-spectral / broadband detection
- polarimetry

\Rightarrow pertinent physical / optical modelling

- \Rightarrow epitaxial growth mastering
- \Rightarrow process mastering for small pixels

At Thales R&T research relies on production facilities

MBE FACILITIES AT TRT

- **RIBER 49 MBE growth system**
 - multi-wafer: 5 x 3" / 3 x 4"
 - automated wafer charging
 - As / Sb based materials
 - GaAs, InP, GaSb, InSb substrates

high stability of growth rate reproducibility uniformity

MBE FACILITIES AT TRT

300 K absorption (a) Brewser angle (1 pass)

Costard et al., SPIE 6206 – 13, 2006

BI-SPECTRAL DETECTION

Alexandru NEDELCU, ATL III-V LAB, France - QWIP 2006: June 18-24, 2006 Kandy, Sri Lanka

4 µm QWIPs

- AlAs layers to increase confinement
- elastic strain control: 20 % Indium, 5 QW
- applied bias compatible with existing read-out circuitry
- high doping (1·10¹² cm⁻²)

4 μm QWIPs

- reproducible IV characteristics
- activation energy at zero bias: 260 meV ≈ peak energy Fermi energy
- optimum FPA performance at -1.2 Volts
- BLIP temperature at 293 K & f/2: 95 K
 - research directions
 increase peak reponsivity
 decrease peak wavelength

pertinent parameter: pixel size / peak wavelengthspectral shape = f(size)peak responsivity = f(size)

• How to model the optical coupling ?

• How to improve the active layer ?

Global conclusions extracted from experimental data:

- optimum active layer for large pixels ≠ optimum active layer for small pixels
- optimum optical coupling for large pixels ≠ optimum optical coupling for small pixels

Optical coupling, pixel geometry and active layer cannot be dissociated

⇒ self-consistent treatment

OPTICAL COUPLING MODELLING

The "elementary" FPA pixel is:

- small compared to λ_{PEAK}
- **complex**
- **3D** structure

- Near-field optics
- Parameters (simultaneous optimisation):
 - Pixel width, height
 - Substrate thickness
 - Grating period, filling factor, depth and topology
- Full experimental way ? Expensive, time-consuming and no information on the near field, no physical insight
- Develop 3D rigorous EM modelling capability: Finite Difference Time Domain method
- Parallel computing

ACTIVE LAYER

QWs are not equivalentthe closer to the gratings, the better

High temperature operation

number of quantum wells ??
barrier width ??
doping ??

POLARIMETRIC DETECTORS

POLARIMETRIC DETECTORS

- setup tested on 2D gratings: residual polarisation ratio < 3 %
 reproducible results
 high polarisation ratio even for 20 μm pixels
 - research directions
 FPA design and fabrication
 goal: 20 µm pitch, 640x512 FPA