

Quantum mechanical effects in internal photoemission THz detectors

M. B. Rinzan, S. G. Matsik, and A. G. U. Perera Department of Physics and Astronomy Georgia State University

Supported by: U. S. National Science Foundation (NSF) under grant ECS#0553051

- Heterojunction Terahertz detectors based on Internal photoemission
- Photoemission models- Existing vs. Proposed
- Photoemission loss from quantum mechanical reflection
- Effect of reflection on detector response
- Conclusion

Interfacial Workfunction in HEIWIPs Band diagram for *p*-type

 $\Delta_{\mathbf{v}}$

 $\Delta = \Delta_{\mathbf{x}} + \Delta_{\mathbf{d}}$

- : GaAs/Al_xGa_{1-x}As valance band offset
- Δ_{d} : Offset due to emitter doping

Assumptions for calculating Photoemission

Carriers are in 3-D distribution

Carrier momentum (k) change is due to free carrier absorption

Emitter material is isotropic for carrier transport

Threshold Wavelength (λ_0)

Threshold Wavelength, λ_0 (µm)= 1240 / Δ (meV)

Current Model for Photoemission

No photoemission of carriers with final momentum k, where k_y < k_{perp}
Threshold wavelength is well defined by λ₀ = 1/ k_{perp}

 $E_F = 11 \text{ meV} \Delta = 7 \text{ meV}$

$$\lambda_0 = 174 \ \mu m$$

Energy of the excited carrier (meV)

Al Fraction 0.005

Measured (f₀)_{min} = 2.3 THz [(λ_0)_{max} = 128 μ m]

Responsivity: V0207

For Bias = 2 kV/cm

 $D^* = 3 \times 10^{11} \text{ cm} \sqrt{\text{Hz/W}}$ $\eta = 9$ % at 6 THz

		اللہ ج ہے Ring Metal Cont	act
		Top Contact →	
W_{Top}	= 200 nm	i AlGaAs →	
W _{Emitter}	= 18.8 nm	p⁺GaAs →	
W _{Barrer}	= 125 nm	Emitter	
W _{Barrer}	= 700 nm	Barrier → ////////	
N _{Top}	= 2 ×10 ¹⁹ cm ⁻³	Dettem Centert	
N _{Emitter}	= 3 ×10 ¹⁸ cm ⁻³	Bollom Contact	
N _{Bottom}	= 1.5 ×10 ¹⁹ cm ⁻³	Semi Insulating	
12 pe	eriods	After Processing	

14

 $E_F = 4 \text{ meV}, \Delta = 74 \text{ meV}$

$$\lambda_0 = 16.7 \ \mu m$$

Final energy of the excited carrier (meV)

 $E_F = 4 \text{ meV}, \Delta = 74 \text{ meV}$

Experimental λ_0 = 16.7 µm

Emission Increases with Bias

Energy of the excited carrier (meV)

Is Photoemission Possible for $hv < \Delta$?

E_F = 4 meV, Δ = 74 meV λ_0 = 16.7 μm

GSU

Proposed Model for Photoemission

- > Photoemission prob. is non-zero even for carriers with $k_{perp} < k_{\Delta}$
- Threshold wavelength is not well defined
- Instrument noise level determines the threshold

Wavelength (µm)

- Reflection loss is significant in short wavelength detectors
- Reflection loss decreases detector signal around the threshold wavelength
- > Needs quantum mechanical treatment for hot carrier scattering events