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Heterojunction Terahertz detectors based on Internal photoemission

Photoemission models- Existing vs. Proposed

Photoemission loss from quantum mechanical reflection

Effect of reflection on detector response

Conclusion
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Interfacial Workfunction in HEIWIPs
Band diagram for p-type
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∆x :  GaAs/AlxGa1-xAs valance band offset 

∆d : Offset due to emitter doping 
∆ = ∆x + ∆d
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Assumptions for calculating Photoemission

Carriers are in 3-D distribution

Carrier momentum (k) change is due to free carrier absorption

Emitter material is isotropic for carrier transport
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Threshold Wavelength (λ0)
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Threshold Wavelength, λ0 (µm)= 1240 / ∆ (meV) 
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Current Model for Photoemission

Emitted carriers
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No photoemission of carriers with final momentum k, where ky < kperp

Threshold wavelength is well defined by   λ0 = 1/ kperp
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Transmission Probability T(E)
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Reflection loss for THz Detectors

EF = 11 meV ∆ = 7 meV

λ0 = 174 µm
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Reflection loss for Long wavelength 
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V0207 THz Detector

Al Fraction 0.005

Measured (f0)min = 2.3 THz [(λ0)max = 128 µm]
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Responsivity: V0207
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Response model: V0207
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Response model: V0207
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Short wavelength HEIWIP (1332)
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Reflection loss for Short Wavelength

EF = 4 meV, ∆ = 74 meV

λ0 = 16.7 µm
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Photoemission vs. Bias Field
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Reflection loss for Short Wavelength

EF = 4 meV, ∆ = 74 meV

Experimental λ0 = 16.7 µm
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Photoemitted carrier density vs. Bias
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Reflection loss vs. Barrier thickness 

Loss can be minimized
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Is Photoemission Possible for hν < ∆ ?

EF = 4 meV, ∆ = 74 meV

λ0 = 16.7 µm
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Proposed Model for Photoemission
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Photoemission prob. is non-zero even for carriers with kperp < k∆

Threshold wavelength is not well defined

Instrument noise level determines the threshold
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Escape Cone vs. Incident Energy
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Conclusion 

Reflection loss is significant in short wavelength detectors

Reflection loss decreases detector signal around the threshold wavelength

Needs quantum mechanical treatment for hot carrier scattering events
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