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E‘Qso—mq Present Activities

» InSb and InAsSb Layers Structures: Epitaxial Growth, diode

— fabrication, characterizations and devices.

Appl. Phys. Lett. 84, 5419 (2004)
Appl. Phys. Lett. 86, 201103 (2005)

» Ternaries Antimonides: GalnSb (THz ) , InAsSb, InSbN.

J Appl. Phys. 98 023511 (2005)
Submitted to The European Physical Journal B
InAsSb detectors in preparations

» QWIP Studies — P and N type (voltage tunability, THz).

Infrared Phys. & Tech October (2005)

» Noise in Quantum wells.
Appl. Phys. Lett. November (2005)

» Droplets epitaxy III-V nanodots.

Submitted to Journal of Crystal growth

» Nanocrystals

Accepted for publication in IEEE sensors journal
Nanogold enhancement and interactions in preparations
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IR Photodetectors Implementations

* |ndustrial

— Electronics, Automotive,
chemical sensing

« Space
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OWIP Process:
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Fabrication:
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Normalized response
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Bulk approach to a Quantum Well

Photon excites an electron to
E=hv produce a measurable voltage

e- 555555
First excited ~k T —_ - R
state <> [
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—~ x50
Ground state —

Current GR noise  [? = 4gqIAf
. 1
5,=13(f)=4gal |

1+ w7’

One expects to see the Gaussian noise. ..



Gaussian noise

The most familiar functions characterizing noise records of some variable x(¢ ) are:

two-point correlation function C.(7)= <x(t)x(t + r)>

power spectral density S(w)= 4_[ C.(r)cos(wr)drt
0

Mathematically, Gaussianity means that every multipoint correlation function can
be obtained by summing all factorizations into two-point products, each of which
is replaced by the two-point correlation. For example, assuming <x>=0,

<x(t)x(l‘ +77)x(¢+7,)x(1 + 2'3)> =C(7))C(7; —7,) + C(7,))C(7; — 1) + C(73)C(7, — 77)

For Gaussian noise all higher order time correlation functions and any of their
Fourier relatives are fully determined by S(w).
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Time traces of the dark current and corresponding noise amplitude
distributions for different bias voltages at 77 K.

Non Gaussian noise at intermediate bias level:
Meaning that in contrast to a bulk GR a limited number of

fluctuators generates the noise APL November 2005



Up and down level statistics
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Lifetime of both states, follow the Poisson distribution
as excepted for a random telegraph process



Non-Gaussian noise

®In the non-Gaussian noise higher moments are important and proper analysis
requires measurements of multipoint correlations:

<x(t)—f>n, n>?2

"All the information contained in a record of a Gaussian noise is
obtainable from S(w). For Gaussian systems all the information can be
obtained from the response measurements.

®"Only non-Gaussian fluctuations provide information which is not
available otherwise.

® Just the mere non-Gaussian character of the noise indicates that it
cannot be due to a combined action of many elementary fluctuators.

Random Telegraph Noise 2772 = I/Tup + I/Tdown

Where: 7, and 7,,,,, are the average life times at the up and down levels respectively.



Low frequency cutoff?
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Dar-k. current noise spectrum for different Exponential growth with different exponents
positive voltages at 77K. a=0.6 and a = 1.45 below and above 2.5V,
respectively.



Duty cycle
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Area (A) under the Gaussian is proportional
to the total time spend in the level (7).
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2.9V crossing point
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Bias dependence of the RTN amplitude (solid circles) and ratio between
the RTN plateau to the GR plateau (open squares).



Proposed fluctuator mechanism

\ Current continuity (a)
™ N
- (b) <
" EENIS
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Possible different resistivity states, characterized by different electric field distributions.
(a) - “up” state, (b) - “down” state.

Discreet wells number mm) discreet voltage distribution
Tunneling from well (LH and HH) ™8 voltage distribution changes

First order like transition

Correlations between the tunneling from the emitter contact and the depletion due to
tunneling from the wells.

Future works: Transport noise in nanodots and molecules nanocrystals system
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Crackling noise

internal avalanche dynamics with ‘ cackling noise
widely distributed amplitudes

0.03

One possible general explanation
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proximity of some non-equilibrium o ;&

critical point l < !e !

power-law distributions over several

decades should occur, together with e

l/t-type noise Crackling avalanche noise

as measured 1n transport
through a nanodots system



Summary

* New type of noise - related to voltage distribution changes
on emitter and wells

 Sensitive to voltage and 1s relevant in extreme conditions
* Non Gaussian noise for both P and N type QWIPs

 In the QWIPs we have checked it 1s much stronger in P-
QWIPs (LH and HH)

*With many wells the noise 1s average out and become
Gaussian

*Crackling noise ?



Open Question

Why district voltage distributions?

A full model is missing
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