

MDA Next Generation IR Detector Development

At QWIP 2006, An International Workshop on Quantum Well Infrared Photodetectors

> June 18-24, 2006 Kandy, Sri Lanka

Dr. Meimei Tidrow Advanced Technology, Missile Defense Agency 7100 Defense Pentagon, Washington, DC 20301 Meimei.tidrow@mda.mil

- IR Sensors are Very Important to Ballistic Missile
 Defense
- BMD IR Sensors are Very Challenging
- MDA/DV Passive EO/IR Program
- IR Sensors Developed in the Past Few Years and Transition Opportunities
- New IR Sensors Under Development for Blocks 2010 and Beyond
- Recent Progress on the Current IR Sensor Development
- Summary

Layered Missile Defense Systems

- Objective: Provide next generation passive EO/IR sensors for future ballistic missile defense.
- Challenge: develop sensors that are higher performance, faster, lighter, smaller, smarter, more compact, reliable, and affordable.
- Approach:
 - Work closely with BMDS to identify their need.
 - Investigate existing and alternative IR materials that have potential for meeting BMD needs.
 - Leverage Services funding and industry IRAD.
 - Annual go, no-go decisions.
 - From year 2000-2004, developed VWLIR HgCdTe, two-color LW/LW
 HgCdTe, and some two-color Si:As and QWIP efforts.
 - Currently concentrate funding on developing 4 major IR materials.
 - Multiple contractors to induce competition and reduce risk.
 - Facilitate technology transition through lab testing, HWIL, simulated environmental and field testing.
- Actively participate in SBIR/STTR, MSTAR and BAA.

Advanced Space Components Supporting STSS

Two-Color FPAs Have Potential for Insertion to EKV, MKV, and KI

DRS two color HgCdTe LPE via hole connection

RSC two color HgCdTe, MBE with micro-lens. Sensor

DRS Anaheim two color Si:As BIB lenslet

EKV

HgCdTe on CdZnTe substrate

- Limited array size due to limited CdZnTe substrate size
- Only one Japanese vendor can provide 211 MBE CdZnTe substrates
- CdZnTe substrate is soft yet brittle, making processing very difficult
- Difficulty in extending to very long wavelength
- Limited material quality, array uniformity, operability, manufacturability, and yield
- InSb
 - Only works at MW and no intrinsic multicolor capability
 - Epitaxy thin film InSb with other elements have potential to extend it to longer wavelength
- QWIP
 - Current QWIP has very small quantum efficiency (η) and gain (g) (η g<2%), not enough for low background applications
 - Operating temperatures are lower than HgCdTe at similar cutoff wavelength, also related to the low quantum efficiency and gain product
 - Current QWIPs needs larger format for WFOV tactical applications
- Si:As
 - Can cover VLWIR, but only works at 10K, limiting its applications
- Uncooled Microbolometers
 - Limited sensitivity, speed, and multicolor capabilities

Desired IR Sensor Features

- Sensors with greater sensitivity, higher resolution, and larger FOV to increase detection and tracking ranges.
- Easily producible, lower cost materials, devices and sensors.
- Easy to extend to VLWIR and multicolor.
- Elevated operating temperatures to reduce cooling need.
- Ideally one single material to cover the entire IR spectrum with more customer support.
- The industry does not depend on government to survive.

Material systems to be explored

- MCT on Si substrate
- Type-II strained layer superlattice
- High quantum efficiency QWIPs
- Pb salt materials for FPAs

- Potential for large format, high performance HgCdTe FPA without lattice mismatch to the readout circuitry (means larger FOV, longer range, and more reliable)
- Direct drop-in insertion to upgrade current BMD IR sensor systems
- Program Goal: VLWIR FPAs for low background
- Status:
 - Significant progress made since program started
 - Buffer layer quality improved and etch pitch density reduced
 - FPAs delivered on schedule

- The SLS has the potential to be superior to HgCdTe, QWIP, and Si:As
- Bandgap can be tuned for strong broadband absorption throughout the 3-30 um range and can easily be designed for multicolor detection.
- Strong Auger suppression can give higher operating temperatures (lower cooling requirement)
- Potential for BMD system upgrades
- Program Goal: VLWIR FPAs for low background
- Status:
 - –Significant progress made since program started. Device design optimization in process. Higher QE achieved
 - -High performance single device demonstrated high values

Results of LWIR Type-II Superlattice FPA

These images and movies were taken from a long wavelength infrared (LWIR) Type-II Superlattice focal plane array (FPA), the first in the world.

Thermal image of a Ph. D. student

Thermal image of a hand where the veins are shown.

Movie of a Ph. D. student

InSb/GaAlAs Type-II SLS FPA

Format: 256×256

- Cutoff wavelength: 9 µm
- Operating temperature: 80 K
- Frame rate: 27.47 Hz
- Detectivity: 10¹⁰-10¹¹cmHz^{1/2}/W
- Mean NEDT: 250 mK

Chart provided by Prof Razeghi from NW University who presented it at SPIE 2006 Orlando

- Large format, very uniform, high operability and easy for multicolor
- Very suitable for high background applications (ABL and THAAD)
- Program Goal: very large format and multicolor FPAs MW/LW FPAs, improve quantum efficiency for strategic applications
- Status:
 - Delivered large format MW camera and mid format MW/LW twocolor camera
 - Quantum efficiency improved
 - Large format FPA in fabrication
 - Two-color MW/LW ROIC in development and will be available to by the end of this year

QWIP Field Test in Aug 06

Camera Comera Co

Integration

lanned joint DV/ABL/Boeing Test in Aug 06

Target:

- Terrier 1st Stage
- Black Brant 2nd Stage
- Other target opportunities

White Sands Missile Range

Launch Site

Observation Site Alamo

Objective: Transition QWIP to ABL

- Another alternative material that has potential to out perform HgCdTe at VLWIR due to its stronger tolerance to material defects and composition variation
- Goal: VLWIR IR FPAs at low background
- Status:
 - Achieved successful growth of PbSnSe/PbSeTe/ZnTe/Si with 10µm cutoff
 - Demonstrated best-ever structural quality as measured by double crystal X-ray diffraction
 - demonstrated excellent electro-optical quality
 - P-type doping is well understood
 - Alternate hot wall epitaxial growth technology has been initiated

- Government funded independent contractors for FPA verification, validation
- Facilitate technology transition through HWIL and relevant environment testing
- Cryocooler Team: Develop a 10 K cryocooler with high efficiency. Characterize and qualify cryocoolers for independent assessments and transition to the BMDS elements
- Independent lab testing at high and low background and radiation tolerance testing in a relevant environment
- Hardware in the loop testing in relevant BMDS environment
- Integrate advanced FPAs into a testbed and support laboratory and MDA field tests
- Field test QWIP and HgCdTe sensors at White Sands Missile Range
- QWIP analysis for BMD environmental test

- IR sensors are very Important to ballistic missile defense.
- BMD IR sensors are very challenging.
- MDA/DV Passive EO/IR Program is developing new IR sensors
 - MCT on Si Substrate
 - Type II SLS
 - High QE and Large Format two-color QWIPs
 - PbSnTe
- Significant progress is being made.

QWIPs for Ballistic Missile Defense?

For the Panel Discussion at the QWIP 2006 Workshop

Dr. Meimei Tidrow Advanced Technology, Missile Defense Agency 7100 Defense Pentagon, Washington, DC 20301 Meimei.tidrow@mda.mil

- Should QWIP compete with MCT, or complement with MCT?
- Should we continue funding QWIPs, or focus funding on SLS?
- QWIPs have tremendous difficulties breaking into US military market, is this technology limited, funding limited, or politics limited?
- How to get QWIP into military systems ?
 - get QWIPs into tactical systems
 - get QWIPs into relevant environment testing: HWIL, ground, airborne, flight, SBX,....
 - work with other IR communities including system engineering, phenomenology, algorithms, and test and evaluation to evaluate QWIPs at a system level
 - do not over sell
- Improve quantum efficiency for low background applications
 - What are the achievable quantum efficiency and conversion efficiency?
 - How high is high enough?
 - How much funding and how much time are need to prove the theoretical estimate?

Good News: We are Making Progress Transitioning QWIP to ABL

lanned joint DV/ABL/Boeing Test in Aug 06

Target:

- Terrier 1st Stage
- Black Brant 2nd Stage
- Other target opportunities

White Sands Missile Range

Launch Site

Observation Site Alamo

Objective: Transition QWIP to ABL

ABL/Boeing Integration

