

Georgia <u>State</u> University Effects of a p-n Junction on Heterojunction Far Infrared Detectors

S. G. Matsik, M. B. M. Rinzan, and A. G. U. Perera Department of Physics and Astronomy Georgia State University, Atlanta, GA 30303 USA

H. H. Tan and C. Jagadish

Department of Electronic Materials Engineering Australian National University, ACT0200 AUSTRALIA

H. C. Liu

Institute for Microstructural Sciences National Research Council, Ottawa K1A 0R6, CANADA

Supported by: U. S. National Science Foundation (NSF) under grant ECS#0553051 Australian Research Council

Introduction

- Other detectors using p-n junctions
- FIR detector results with p-n junctions
- Modeling results
- Conclusions

f₀: 2.3 THz AI Fraction 0.005 AIGaAs Emitters

M. B. M. Rinzan, A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, APL **86**, 071112 (2005)

E. Dupont, M. Gao, Z. Wasilewski, and H. C. Liu APL **78**, 2067 (2001)

QWIP-LED

E. Dupont, M. Byloos, M. Gao, M. Buchanan, C. Y. Song, Z. R. Wasilewski, and H. C. Liu, IEEE Photonics Tech. Lett. **14**, 182 (2002)

D. D. Coon, R. P. Devaty, A. G. U Perera, and R E Sherriff, APL 55, 1738 (1989)

- Carrier generation and recombination
 Dependence on carrier densities
 Normalization procedure
- Carrier transport
 - **Drift-Diffusion**
 - Interface effects
 - Tunneling
- Steady state results
- Time dependence results

HEIWIP (AlGaAs Emitter)

Non-Zero Bias

Have conduction and valence band wells in the same layer

Keep the n-doping low

Can introduce recombination well into the structure Would allow use of AlGaAs emitters

Future Detectors

