Broadband QWIP Designs

Goals:

Cover wavelength range of 8 – 12 μ m (40% $\Delta\lambda/\lambda$) Tblip >= 50 K (the best predicted case 65 K) Absorption >= 15%

For maximizing dark current limited D*: Using $E_f=2k_BT$ and $n_{2D}=(m^*/\pi \epsilon^2)E_f$, where E_f is the Fermi energy, and m^* is the effective mass in the well. For GaAs wells, we get: $E_f=8.625$ meV, and $n_{2D}=2.43 \times 10^{11}$ cm⁻².

The design is essentially two standard QWIPs in series. Advantage: responsivity should be similar to standard QWIPs. Disadvantage: thick structure. For the 12-µm QWIP,

the GaAs well width is Lw=5.9 nm with AlGaAs barrier Al fraction x=0.18. As given before, the n-type doping in the well is $n_{2D}=2.43 \times 10^{11}$ cm⁻² (*Ef*=8.625 meV).

For the 10- μ m QWIP, *Lw*=53 nm and *x*=0.22.

To ensure the same device resistance, the doping in the 10- μ m QWIP is increased to 9.02x10¹¹ cm⁻² so that the activation energy is the same. ΔEf is 23.4 meV. This leads to Ef=8.625+23.4=32.0 meV

Now since the doping is almost four times higher, more wells are required for the 12- μ m QWIP to have an equal absorption, perhaps not as much as 4 times since 12- μ m QWIP will have a tail absorption into the 8 – 10 μ m region.

Let us take the numbers of wells to be $N_{12\mu m}$ =40 and $N_{10\mu m}$ =15.

The last parameter is the barrier thickness: A simple estimate can be made of the direct inter-well tunneling current. The background photocurrent for a usual environment (~300 K) is no more than 10^{-5} A/cm². To be well on the safe side, we choose the barrier widths *Lb*=40 and 37 nm for the 12-µm and 10-µm QWIPs, respectively.

Calculated dark currents for both 10 and 12-µm QWIPs, they are identical.

Design 2: Interlaced Design

This unit is repeated N times with a few more 12 µm wells throughout

Design 3: Potential inserted Design

2.3 0.7 2.3 nm

5.3 nm

This unit is repeated N times with a few more 12-µm wells throughout

Design 4: Few-period Superlattice Design

Superlattice consisting four QWs

32 repeats of this unit

Lw/Lb = 5.8/6.2 nm and *x*=0.19

Room temperature, zigzag, 3 bounces

Superlattice: OK, a little broader to 8um side would have been better

Potential inserted: moving the 12um feature higher would be better, 10um feature is broader due to higher doping

Interlaced: similar to above

Stacked: grew an extra one with higher AI, missing 12um absorption !?

Standing wave effect?

Conclusion

- Superlattice, potential inserted, and interlaced designs met expectation
- Stacked design has difficulties