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Motivation and Approach
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• Experimentally measured photoresponse of 
an InAs/InGaAs/GaAs dot-in-the-well 
(DWELL) structure shows normal incidence 
response can be a sizeable fraction of the 45°
incidence response.

• Experimentally measured photoresponse of 
an AlGaAs/GaAs/AlGaAs QWIP structure 
shows sizeable backgroud absorption at long 
wavelengths (>10μm)

• Explore this physical phenomenon by 
theoretical investigation (14-band model + 
impurity) for possible explanations.



Photoresponse in DWELL Structure
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• The fundamental transition (ground 
to px or py like states) yields no 
appreciable photocurrent.
– Very strong normal incidence 

absorption. 
– But upper state is deeply 

bound

• Observed photocurrent is 
attributed to transitions from the 
s-like ground state to states in 
the pz- or d- like and higher 
states. 
– Predominantly z-polarization 

absorption.  (QWIP-like; can 
activate with grating)

– Also has weaker x,y-
polarization (normal incidence) 
absorption.
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Normal and 45° Incidence Response in 
Dot-in-the Well Structure
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• 45° incidence yields stronger response
• Relative to the 45° response, the normal incidence 

response is much stronger than in QWIPs
• Similar behavior seen in QDIPs



Observation and Possible Explanations
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• Relatively strong normal incidence response 
observed experimentally

• Simple effective mass model predicts no normal 
incidence oscillator strength for transitions from s-like 
ground state to pz like states.

• Possible Explanations: 
– Band structure effects (due to mixing with other bands)
– Impurity scattering Effects

• Dopant hydrogenic wave function radius can be comparable to 
size of quantum dot

– Transition to higher states

• Investigate theoretically



Theoretical Analysis

dzt 6

• Energy and wave functions computed using a stabilized 
transfer matrix technique by dividing the system into 
many slices along growth direction.

• Envelope function approximation with energy-dependent 
effective mass is used.

• Effective-mass Hamiltonian in k-sapce:
[(kx

2+ky
2 )/mt(E)+∂z

2 /ml(E)-E]F(k) + Σk’[V(k,k’)+Vimp(k,k’)]F(k’)=0
is solved via plane-wave expansion in each slice.

• 14-band k·p effects included perturbatively in optical 
matrix elements calculation

• Dopant effects incorporated as screened Coulomb 
potential

• The technique applies to quantum wells and quantum 
dots (or any 2D periodic nanostructures)
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Quantum Well



Band Structure Effect on Oscillator Strengths
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• GaAs/Al0.26Ga0.74As 
quantum well
– 54 Å wide GaAs well

• Band structure effect 
predicts > 0.2% x to z 
oscillator strengths ratio 
at kx =0.02

• In general agreement 
with results reported in 
the literature
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Ground State Energy 
with Impurity

• With dopant, ground state 
energy vs. z-position (z=0 
at edge, z=27 at well 
center)

• Green line is the ground 
state energy without 
dopants

• Single dopant simulation

• Different cell sizes used 
to simulate different 
doping concentration

Well center
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Quantum Well Energy Levels
with Dopant

• A single dopant is placed 
in a supercell with 100 Å
lateral dimesnions
– Dopant located at 6 Å from 

cell of the 54 Å wide GaAs
well

• Dopant potential binding 
energy ~ few meV

• Supercell zone folding 
effects seen in energy 
levels



Dopant Effects on Oscillator Strengths
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• Incorporation of dopant
potential can increase 
the normal incidence 
oscillator strength

• More realistic simulations 
can be done using larger 
supercells with multiple 
randomly placed dopants



Dopant Effects on Oscillator Strengths
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• Simulation geometry
– Supercell with 300 Å

lateral dimesnions
– 10 randomly placed 

dopants in QW region of 
supercell

• Oscillator strength 
computed with the lowest 
5 energy levels filled

• Only z oscillator strength 
when there is no dopant
potential

• Dopants induce normal 
incidence oscillator 
strengths.



Absorption Coefficient
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• 40 impurities and 8 
impurities

• Low energy: 
intrasubband; 

• xy dominant
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Quantum Dot



Simulation Geometry
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InAs quantum dot embedded in GaAs

• Truncated pyramid (lens-shaped) QD   
on wetting layer

– Base width 265 Å
– Dot height 25 Å
– Wetting layer thickness  5 Å
– Lens shaped dot

• Incorporate dopant potential
– Single dopant
– Vary lateral position
– Vary vertical position



Charge densities of low-lying states in lens-shaped QD
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px/py likes-like

pz liked-like
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Quantum Dot with Dopant Impurity
Energy Levels

• Single dopant in a 
supercell

• Dopant position
– Vary lateral (x) position
– Vertical position fixed at  5 

Å above top of wetting 
layer

• Energy level of QD with 
no dopant indicated by:
– Green dashed line: 

even in x
– Blue dotted line: odd in x

• Degeneracy removed by 
off center dopants



Effect of Dopant Potential on Oscillator Strengths
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• Examine transitions from 
s-like ground state to 2nd

set of excited states (d-
manifold)

• No x oscillator strength 
without dopant potential

• With well-placed dopant, 
x oscillator strength can 
exceed z oscillator 
strength
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Quantum Dot with Dopant Impurity
Energy Levels

• Single dopant in a 
supercell

• Dopant position
– Vary vertical (z) position
– Lateral position fixed at  40 

Å off center

• Energy level of QD with 
no dopant indicated by 
dashed lines

• Degeneracy removed by 
off center dopants



Effect of Dopant Potential on Oscillator Strengths
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• Examine transitions from 
s-like ground state to 2nd

set of excited states (d-
manifold)

• Varying vertical position 
of dopant

• No x oscillator strength 
without dopant potential

• With well-placed dopant, 
x oscillator strength can 
exceed z oscillator 
strength



Effect of Dopant Potential on Oscillator Strengths
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• Single dopant within the 
quantum dot
– X: 40Å off center
– Z: 5 Å above top of wetting 

layer

• No impurity oscillator 
strengths plotted as drop lines
– X and y symmetric

• At transition energies above 
that of the fundamental (s-p) 
transition, dopant potential in 
general increases normal 
incidence oscillator strength at 
the expense of z oscillator 
strength 



Summary
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• Observed relatively strong normal incidence 
photoresponse in low-aspect ratio quantum 
dot devices

• Theoretical investigations indicate scattering 
due to dopant impurity potential could 
contribute to normal incidence response
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