## 1/f Noise in Dye-sensitized Solar Cells and NIR Photon Detectors

#### P.K.D.D.P. Pitigala, M.K.I. Seneviratne, K.Tennakone Institute of Fundamental Studies,Sri Lanka

P.V.V Jayaweera ,A.G.U.Perera Department of Physics and Astronomy, Georgia State University, USA.

#### **Dye-sensitized photon detector**



#### **Bonding of Dyes to the TiO<sub>2</sub> Surface**



#### **IR DYES**



IR-1100



IR-1135

#### The problem of thick dye layers

Thick dye layers are insulating and also causes quenching, i.e.,  $D^* + D^* - - \rightarrow D + D + heat$  $D^* + D - - - \rightarrow D + D + heat$ 

Semiconductor Dye Monolayer

At monolayer coverage quantum and energy conversion efficiencies are very small because of the poor light absorption by the monolayer.

## To increase the photon absorption cross-section dye is deposited on the rough electron conducting surface

Hole Collector (Redox electrolyte or p-type



→Pt



TiO<sub>2</sub>(dyed) Conducting Tin Oxide

hν

Thickness of the light absorbing layer can be made smaller than the exciton or carrier diffusion length  $L=(D\tau)^{1/2}$ , while maintaining a large optical absorption cross-section



Light absorbing material- dye, semiconductor, Q-dots

## Efficiencies (E &Q) of dyesensitized solar cells

Cells based on electrolytes ~ E~ 10%, Q~ 85% Fully solid state cells (solid hole collector) ~ E ~ 4%, Q ~ 60% **Recombination Modes: Dye Sensitized Solar Cells/Photon Detectors** 

1.Geminate recombination  $hv + D \rightarrow D^* \rightarrow D^+ + e^ D^+ + e^- \rightarrow D$ 

- 2. Recombination of the injected electron with an acceptor at dyed oxide surface
- 3. Recombination of the injected electron with an acceptor at the exposed conducting glass surface.

Injection and Geminate Recombination Rates

Injection time  $\mathbf{D}^* \rightarrow \mathbf{D}^+ + \mathbf{e}^-, 10^{-14} - 10^{-15}\mathbf{s}$ 

k =  $4\pi^2/h [\langle i|H|j \rangle]^2 \rho(E)$  ? H = Semicoductor-Dye Electronic Coupling  $\rho(E) =$  Density of States in the CB Recombination time  $D^+ + e^- \rightarrow D$ ,  $10^{-5} - 10^{-7}s$  Recombination of Electrons with Acceptors During Transit



**Recombination rate** =κ

**Recombination** Time  $=\kappa^{-1}=\tau$ 

Mean free path =  $(D\tau)^{1/2}$ 



Recombination after leakage from the nanoparticle surface Recombination at the back contact



# Surface trap mediated recombination

## **Problem of Surface Traps**

- 1. Surface trap mediated recombination is very severe
- 2. Trapping and detrapping slows down transport (reduces diffusion coefficient)
- **3. Trapping/Detrapping generate noise**



Recombination of Electrons with Acceptors During Transit



Recombinations are generally mediated by surface states

#### **Recombination Rate** ~ $(\Psi_s, \Psi_b)$

We are not certain whether  $\Psi_b$  the wave function of electron in the bulk of the semiconductor is conduction band state or a trapped state

#### 1/f Noise in Mesoscopic Semiconductor films

At constant voltage ,current exhibits 1/f ( f=frequency )noise

This noise is quite sensitive to trappingdetrapping of carriers The fluctuating current is of the form

 $I(t) = I_0 + X(t) \text{ where } I_0 \text{ is the mean and we}$ define S(f) as

$$S(f) = Lim_{T \to \infty} \left( \frac{1}{2T} \left| \int_{-T}^{T} X(t) e^{-2\pi i f t} dt \right|^2 \right)$$

S(f) gives the noise power spectrum as a function of f

A schematic diagram illustrating (a) sample geometry used for the noise measurement. (b) The circuit used for the noise measurement.



#### S(f) generally satisfy Hoog's Formula



The constant A measures the level of noise and  $\delta$  is an exponent close to unity.

Noise spectra at 23°C of, (a) bare TiO2 film in N2. (b) bare TiO2 film in N2 at RH  $\sim$ 70 %. (c) bare TiO2 in a N2 saturated with I2 vapor. (d) TiO2/BPR in N2. (e) TiO2/N3 in N2. (f) TiO2/BPR in N2 saturated with I2. (g) TiO2/N3 in N2 saturated with I2. (h) TiO2/BPR in N2 at RH  $\sim$ 70 %. (i) TiO2/N3 in N2 at RH  $\sim$ 70%.



# The values of parameters A and $\delta$ for different systems obtained by fitting noise data to the formulae (1),

| biasing voltage = 18 V :                                     | $I_o = 3.2 \times 1$ | $I_o = 3.2 \times 10^{-4} \text{ A}.$ |  |
|--------------------------------------------------------------|----------------------|---------------------------------------|--|
| sample                                                       | δ                    | A                                     |  |
| TiO <sub>2</sub> (vacuum)                                    | 0                    | 4.4×10 <sup>-18</sup>                 |  |
| $TiO_2(N_2)$                                                 | 0                    | 4.4×10 <sup>-18</sup>                 |  |
| TiO <sub>2</sub> /BPR (vacuum)                               | 0                    | 4.4×10 <sup>-18</sup>                 |  |
| TiO <sub>2</sub> /N3 (vacuum )                               | 0.                   | 4.4×10 <sup>-18</sup>                 |  |
| TiO <sub>2</sub> /BPR (N <sub>2</sub> )                      | 0                    | 4.4×10 <sup>-18</sup>                 |  |
| $TiO_2/N3 (N_2)$                                             | 0                    | 4.4×10 <sup>-18</sup>                 |  |
| $TiO_2(N_2, RH = 70\%)$                                      | 1.25                 | 8.8×10 <sup>-10</sup>                 |  |
| TiO <sub>2</sub> /BPR (N <sub>2</sub> , RH= 70%)             | 1.15                 | 4.4×10 <sup>-11</sup>                 |  |
| TiO <sub>2</sub> /N3 (N <sub>2</sub> , RH = 70%)             | 1.30                 | 5.7×10 <sup>-10</sup>                 |  |
| $TiO_2$ (N <sub>2</sub> , saturated I <sub>2</sub> vapor)    | 1.37                 | 5.8×10 <sup>-9</sup>                  |  |
| $\rm TiO_2/\rm BPR$ ( $\rm N_2$ , saturated $\rm I_2$ vapor) | 0                    | 4.3×10 <sup>-18</sup>                 |  |
| TiO <sub>2</sub> /N3 ( $N_2$ , saturated $I_2$ vapor )       | 0                    | 4.4×10 <sup>-18</sup>                 |  |

#### **Results of the Noise Measurement**

- 1. TiO<sub>2</sub> film in vacuum or  $N_2$  no 1/f noise
- $2.TiO_2$  film in N<sub>2</sub> with traces of I<sub>2</sub> intense 1/f noise
- 3. Dyed  $TiO_2$  film in  $N_2$  with iodine no 1/f noise

Electron acceptor states created by adsorbed iodine creates 1/f noise. The dye passivates acceptor states. When the nanocrystalline surface is bonded with a suitable dye, the trapping sites are passivated.
1/f noise suppressed
Recombination suppressed
Electron transport facilitated (D<sub>dye</sub>>> D<sub>bare</sub>)

## **Recombination in Dye-sensitized Devices**

Surface traps that generate 1/f noise are also the recombination sites.

#### **Conclusion from Noise Experiments**

Nanocrystalline oxide films are heavily populated with defects, surface states ,adsorbed species etc, that act as trapping (recombination) sites. Passivation by dye adsorption clears most of these traps. Possible applications – Solar Cells, Photon Detectors.

## Dye-sensitized NIR detector



Response time  $\tau \sim L^2/D$ L= Film thickness, D = Diffusion coefficient

Detectivity ~  $10^{11}$  cm Hz<sup>-1/2</sup>W<sup>-1</sup> (812 nm)

Detectivities of the same order for some dyes absorbing in the region 1000 nm Responsitivities are rather low ~ 10<sup>-3</sup> A/W

## Strategies for improvement

**Design dyes to achieve the following** 

- 1. Peak absorption
- 2. Fast injection slow geminate recombination
- 3. Attach ligands to passivate trapping sites

### Conclusion

High band-gap mesoscopic semiconductors

Insensitive to visible/IR
Slow carrier transport
Noise
Recombination of photogenerated carriers

All the above ills can be cured in one stroke by
bonding the surface with a suitably designed dye

## Cells based on Indoline Dyes

Indoline organic dyes give high conversion efficiencies ?

Understanding of their properties and mode of interaction with TiO<sub>2</sub> likely to give very important clues

#### Structural Formula of the Indoline dyes D-149 and D-102







## The Secret of Indolines?

Anchorage via carboxylate ligand facilitate electron injection.

It seems that basic nitrogen sites in indoline passivates electron accepting acidic sites on TiO<sub>2</sub>. Thus recombination and noise suppressed.

Indoline like structures can be made to absorb in the NIR region

# Photocurrent Action spectra of SnO2 cells sensitized with(a) D-149and(b) D-102



I-V Characteristics of SnO<sub>2</sub> cells sensitized with (a) D-149 (b) D-102 and (c) N719 and Dark I-V Characteristics of SnO2 cells sensitized with (d) D-149 (e) D-102 and (f) N719



**V / mV** 

#### I-V Parameters of SnO<sub>2</sub> cells sensitized with indoline and Rubipyridyl dyes

| Dye   | J <sub>sc</sub><br>mAcm <sup>-2</sup> | V <sub>oc</sub><br>mV | η<br>% | FF   |
|-------|---------------------------------------|-----------------------|--------|------|
| D-149 | 14.1                                  | 409                   | 2.8    | 0.49 |
| D-102 | 11.9                                  | 380                   | 2.2    | 0.50 |
| N-719 | 12.1                                  | 262                   | 1.2    | 0.37 |

## Indoline vs Ru dyes on SnO<sub>2</sub>

SnO<sub>2</sub> based dye-sensitized cells are more susceptible to recombination than TiO<sub>2</sub> cells.

With SnO<sub>2</sub> indolines give efficiencies higher than that Ru bipyridyl dyes

It seems that indoline dyes passivates SnO<sub>2</sub> surface more effectively closing the recombination sites

#### **Dye-sensitized NIR Detector**



### Conclusion

High band-gap mesoscopic semiconductors

Insensitive to visible/IR
Slow carrier transport
Noise
Recombination of photogenerated carriers

All the above ills can be cured in one stroke by
bonding the surface with a suitably designed dye