
1SCienTifiC REPOrTS | 7: 16993  | DOI:10.1038/s41598-017-17027-4

www.nature.com/scientificreports

ATR-FTIR spectral discrimination 
between normal and tumorous 
mouse models of lymphoma and 
melanoma from serum samples
Hemendra Ghimire1, Mahathi Venkataramani2,3, Zhen Bian3, Yuan Liu2,3 & A. G. Unil Perera   1,2

This study presents, attenuated total reflection Fourier transforms infrared spectroscopy of dried 
serum samples in an effort to assess biochemical changes induced by non-Hodgkin’s lymphoma and 
subcutaneous melanoma. An EL4 mouse model of non-Hodgkin lymphoma and a B16 mouse model 
of subcutaneous melanoma are used to extract a snapshot of tumor-associated alteration in the 
serum. The study of both cancer-bearing mouse models in wild types and their corresponding control 
types, emphasizes the diagnostic potential of this approach as a screening technique for non-Hodgkin 
lymphoma and melanoma skin cancer. Infrared absorbance values of the different spectral bands, 
hierarchical clustering and integral values of the component bands by curve fitting, show statistically 
significant differences (student’s t-test, two-tailed unequal variance p-value < 0.05) between spectra 
representing healthy and tumorous mouse. This technique may thus be useful for having individualized 
route maps for rapid evaluation of lymphoma and melanoma status and associated therapeutic 
modalities.

The incidence rates of cutaneous melanoma1, a deadly form of skin cancer, has been increasing in many 
regions and populations over the last few decades2. The increase has been of the order of 3–7% per year among 
fair-skinned populations3. At the same time, non-Hodgkin’s lymphoma (NHL)4, a solid tumorous condition of 
the immune system with a wide range of histological appearance and clinical features, accounts 4.3% of all new 
cancer cases in the US5. Although significant improvement has been made to stabilize the number of NHL cases 
and to increase its five-year survival rate, the existing diagnostic techniques, which include the histological exam-
ination using biopsy, are time-consuming, invasive, costly, and are not accessible to the entire at-risk population. 
Developing a rapid and reliable prescreening strategy for melanoma and lymphoma is thus critical because of 
early diagnosis and treatment of these malignancies better improve6,7 the patient’s chances of survival.

Fourier Transform Infrared (FTIR) spectroscopy is an attractive technique for a rapid, reliable and afforda-
ble screening of multiple diseases8–11. This technique extracts a snapshot of molecular components within the 
diagnostic medium and provides a holistic biochemistry of that medium12. The FTIR spectroscopy combined 
with appropriate data handling frameworks has been widely applied in many oncological studies9 such as stud-
ies involving the cancers of the cervix13, the lung14, the breast15, the skin16, the gastro-intestine17, the prostate18, 
the colon19, the ovary20, the urinary bladder21 and many other body parts. These studies have reported that the 
molecular structural rearrangement associated with cancer development alters the vibrational mode of the molec-
ular functional groups of the affected tissues as manifested in spectral markers or signatures. Furthermore, the 
Attenuated Total Reflection (ATR) sampling mode22 of FTIR spectroscopy represents a complementary approach 
for the clinical application10,23, compared to other infrared approaches24. In this mode, high-quality results with 
better spectral reproducibility compared to other modes can be obtained by the use of fluid samples25. It has 
been noted that metabolic discharges into the body fluids (saliva, excreta, blood and other tissue fluids) from the 
proximate cancerous tissue change the constituent molecules, providing strong guidance for subsequent clin-
ical assessment21,26. ATR-FTIR spectroscopy of body fluids has thus attracted much attention in the scientific 
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community including clinicians for rapid detection of various health conditions27. Herein, we demonstrate the 
diagnostic capability of ATR-FTIR spectroscopy for the melanoma and NHL by testing air-dried serum samples 
from respective mouse models.

Results
Discrimination of absorbance values.  Figure 1(a) shows the average normalized ATR-FTIR spectrum 
of air dried serum samples extracted from tumor-bearing mouse models of EL4 lymphoma (n = 8) and B16 
melanoma (n = 8) in wild types and corresponding control types (n = 15). Using the student’s t-test, p-values 
(two-tailed unequal variance), the most discriminatory features of the spectrum within the spectral range 1800–
900 cm−1, were extracted (Fig. 1(b)). Interestingly, the features observed for different groups enable the clas-
sification between control cases and malignant cases and between the two malignant cases of lymphoma and 
melanoma. Molecular assignments26,28–32 of five spectral bands showing discrimination of EL4 lymphoma from 
their control types, with higher significance (i.e. p-values < 0.05) are presented in Table 1. These are the bands 
originating from (i) amide I of protein, (ii) amide II of protein (iii) C-H deformation of CH3/CH2 groups, (iv) 
asymmetric phosphate I, and (v) Carbohydrates and nucleic acids. Similarly, two spectral bands showing the 
significant difference between B16 melanoma and their control types are also shown in the shaded regions of the 
table. Significant alteration in the amide I band and the complex band of carbohydrate and the nucleic acids are 
observed for B16 melanoma. The difference in the p-values observed between lymphoma and melanoma could be 
attributed to the difference in mechanism of each type of tumor development, while similarity could be attributed 
to common etiology33.

Protein secondary structures analysis by deconvolution of amide I band.  Amide I band region 
with strong absorption is highly sensitive to the minor changes in molecular geometry and hydrogen bonding 
patterns of protein molecules. This sensitive vibrational band of protein backbone relates to protein second-
ary structural components and gives rise to different C = O stretching frequency for each structure34. Studies 
have shown that the secondary structure information obtained from the spectral deconvolution (or fitting)34,35 
of the amide I band are in agreement with information from X-ray crystallographic structures of proteins36–38. 
Secondary structure analysis is done by the deconvolution of the experimental amide I band into component 
energy bands39. The minima of second derivatives of spectra (Fig. 2(a)) were used to approximate the posi-
tion and number of Gaussian function energy profiles required to fit an experimental curve. Once the posi-
tions were determined, six Gaussian profile bands were used by minimizing Root Mean Square (RMS) error 
via a Levenberg-Marquardt function such that the simulated curve best fits the experimental curve as shown in 
Fig. 2(b). Energy bands at approximately 1652 and 1630 (in cm−1) have been assigned40,41 as vibrational modes 

Figure 1.  The discriminatory region of infrared absorbance spectra. (a) Average normalized ATR-FTIR 
spectra of serum samples extracted from EL4-lymphoma (n = 8), B16-melanoma (n = 8) mouse models in 
wild types and corresponding control types (n = 15). The inset (i) shows B16-melanoma mouse with tumor 
size approximately 1000 mm3 (day 18). Increase in volume of the tumor from the day 9 to day 18 of tumor 
inoculation in B16-melanoma mouse is as in inset (ii). Similar to the B16 mouse, elevation of tumor size is also 
monitored in EL4-lymphoma. The serum sample is extracted for both types of mice when tumor size becomes 
bigger than 1000 mm3. (b) Student’s t-test (two-tailed unequal variance) p-values of absorbance. Discriminatory 
region for lymphoma with higher significance (p < 0.05) are amide I of protein, amide II of protein, C-H bends 
of CH3/CH2 groups in α- and β- anomers, asymmetric phosphate I, and carbohydrates with predominant 
contributions nucleic acids (DNA/RNA via PO2

− stretches). Discriminatory regions of melanoma are amide I 
and carbohydrates with predominant contributions of nucleic acids.
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of α–helix and β–sheet structural components respectively. The α–helix component integral value (area under 
the Gaussian band) decreases while the β–sheet component integral value increases simultaneously due to tum-
origenesis (Fig. 2(c)). However, the integrals of component bands side-chain (~1610 cm−1), random coils (~1645 
cm−1), β-turn (~1682 cm−1) and β–sheet with opposite alignments40 (1690 cm−1) do not show any appreciable 
change due to the tumor development.

In order to demonstrate alterations in structural components due to malignancy, integral values of α–helical 
and β–sheet structures and their ratios were statistically analyzed. Figure 3(a) and (b) show the cluster plots of 
the integrals of α–helical and β–sheet structures respectively for the control, B16 and EL4 mice. These figures 
clearly demonstrate a separation between the corresponding integral values for the control and tumorous groups 
for β–sheet and α–helix. Furthermore, the ratio of integral values α–helix to β–sheet (Fig. 3(d)) is always less than 
the control values for both mouse models with greater than 99% significance.

Amide I and II absorbance values.  Amide I and Amide II are the two major bands of the infrared spec-
trum for protein interrogation in biological materials28,29. The intensity and position of these bands, determined 

Wavenumber region (cm−1) Assignments

i 1700–1600 Amide I of proteins: (α-helical, β-pleated sheet, β-turns, random coils and side-chain structures), ν(C = O), 
ν(C-N), CNN.

ii 1480–1580 Amide II of proteins: (α-helical, β-pleated sheet, unordered conformation structures), δ(N-H), ν(C-N).

iii 1325–1380 C-H deformation: due to CH3/CH2 bending (groups in α and β anomers) of lipids and proteins.

iv 1190–1240 Asymmetric phosphate I: νas(PO2
−) of lipid phosphates.

v 1000–1140 Carbohydrates and nucleic acids: C-O, C-C stretch, C-H bend, deoxyribose/ribose DNA, RNA, νs(PO2
−).

Table 1.  Discriminatory infrared spectral bands of dried serum with biomolecular assignments (taken from 
references26,28–32).

Figure 2.  Protein secondary structure analysis. (a) The representative of the second derivatives of the ATR-
FTIR absorbance spectra confined to amide I band. (b) Deconvolution of amide I region: baseline corrected 
spectra were fitted with six Gaussian band profiles by approximating number and position using the minima of 
second derivatives, which simulated fits to the experimental curve. Six Gaussian band profiles are assigned as 
(1) side chain (~1610 cm−1), (2) β sheet (~1630 cm−1), (3) random coil (~1645 cm−1), (4) α helix (~1652 cm−1), 
(5) β turn (~1682 cm−1) and (6) β anti-parallel sheet (~1690 cm−1) structures. (c) Averaged Gaussian function 
energy bands of each studied types which prove elevation of β sheet and drop off α helix structures due to 
malignancies, while other structures remain same.



www.nature.com/scientificreports/

4SCienTifiC REPOrTS | 7: 16993  | DOI:10.1038/s41598-017-17027-4

by backbone confirmation of the hydrogen bonding pattern change with malignancies13,42. Amide I band posi-
tion shifts towards the lower wavenumber due to malignancy (see supplementary materials Fig. S1). The average 
position of amide I representing control is at 1641 cm−1, B16 is 1640 cm−1 and that of EL4 is 1638 cm−1, but the 
position of amide II is exactly at 1538 cm−1 for all three types. Altered position of amide I is statistically significant 
for EL4 (*p = 0.001) while that of B16 is not significant (*p = 0.2). Similarly, altered ratio between amide I and 
amide II absorbance values is significant (*p = 0.01) for EL4 lymphoma but not (*p = 0.3) for B16 melanoma in 
comparison to the control groups.

Nucleic acids and carbohydrate analysis.  In the region 1140–1000 cm−1, there are plenty of overlap-
ping vibrational modes of biological macromolecules9 with the major contribution of nucleic acids and carbo-
hydrates12. Bands approximately at 1121 cm−1 arise from RNA absorbance, whereas the band at 1020 cm−1 arises 
from DNA absorbance43. The spectral band near 1080 cm−1 is due to νs(PO2

−), and the band approximately at 
1056 cm−1 corresponding to the νs(PO2

−) absorbance of phosphodiesters of nucleic acids and the O-H stretch-
ing coupled with C-O bending of C-OH groups of carbohydrates44. Similarly, absorbance near 1033 cm−1 and 
1076 cm−1 are due to the presence of glucose (C-O stretching carbohydrate, β-anomer) and mannose (C-O 
stretching carbohydrate α-anomer)10. Alteration in concentration of two sequences of basic genetic materials- (a) 
RNA (which play an active role in protein synthesis) and (b) DNA (which is primarily involved in the storage, 
copying and transferring genetic information), has been already reported from the tissue analysis of NHL43 and 
subcutaneous melanoma45. Due to the fluctuation in these biomolecules, there is a dissimilarity between malig-
nant groups from their control types. In order to verify these dissimilarities, we have used Hierarchical Cluster 
Analysis (HCA) along with spectral deconvolution within this spectral range.

HCA is commonly employed to identify the similarities between the FTIR spectra by using the distances 
between spectra and aggregation algorithms14. The dendrogram of HCA is performed with ATR-FTIR spectra 
of control, B16, and EL4 mice, are shown in Fig. 4. Dendrogram tree diagram performed using spectral region of 
nucleic acids and carbohydrates, 1140–1000 cm−1, using Ward’s algorithm and squared Euclidian distance meas-
urements, allow us to visualize of overall grouping structure, including the sub-groups. The distinct cluster for the 
control spectra which are grouped together, describing a high degree of similarity within the groups. Similarly, 
there is a distinct clustering in the cancer spectra showing the higher degree of heterogeneity between spectra of 
cancerous groups.

Furthermore, to quantify tumor-associated alteration within this complex spectral region of 1140–1000 cm−1, 
deconvolution of experimental spectra into Gaussian function band profiles is further employed. Six Gaussian 
function energy band profiles (Fig. 5(b)) are used to fit the spectra by approximating number and position using 
the minima of second derivatives (Fig. 5(a)). The sum of the integral areas covered by six bands (integral val-
ues) is then statistically analyzed to evaluate the tumor-associated alteration in the serum. A calibration curve is 
obtained, as shown in Fig. 6(a) between control and tumorous groups. A clear separation between control (12–14) 

Figure 3.  Plots of the protein secondary structures (α-helix, β-sheet) and their ratio. (a) Quantified integral 
(area covered) values of α-helix components are less for tumorous cases compared to control. (b) Integral 
values of β-sheet components are higher for tumorous cases compared to control (c) Bar graph representation 
of average integral ratios between α-helix and β-sheet for control, B16 and EL4. Significant alteration in integral 
ratio (α-helix/β-sheet) is found between control and tumorigenic case.
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and cases of tumorigenicity B16 (15–17) and EL4 (15–18) is found while adding the integral values. Bar graph 
representation of these values with significance greater than 99% is shown in Fig. 6(b).

Discussion
The results of the present study show remarkable differences (Table 2) between the ATR-FTIR spectra of serum 
samples representing tumor-bearing mouse models of melanoma (n = 8) and NHL (n = 8) from their control 
(n = 15) types. The differentiating signatures between spectra are obtained by observing (i) p-values compari-
son, (ii) the spectral position and ratio analysis of amide peaks (iii) the fit of the experimental spectra and (iv) 
the employment of multivariate analysis (HCA). This difference between control and tumorous cases is evident 
through the gradual changes in the intensities of the absorption of mainly proteins, carbohydrates and nucleic 
acids in the serum. It is noted that serological tests show the alterations of certain proteins, peptides, and nucleic 

Figure 4.  Dendrogram of hierarchical cluster analysis. Dendrogram tree diagram performed within spectral 
range 1140–1000 cm−1, by using Ward’s algorithm and squared Euclidian distance measurements. The spectra 
are correctly classified. Control spectra appear grouped together, which describes a high degree of similarity 
within the groups. Similarly, there is a distinct clustering in the cancer spectra in two subgroups showing the 
higher degree of heterogeneity between cancerous spectra.

Figure 5.  Analysis of carbohydrates and nucleic acids. (a) The representative of the second derivatives of 
the ATR-FTIR absorbance spectra confined to 1140–1000 cm−1. (b) Deconvolution of spectral range into six 
Gaussian band profiles by approximating number and position using minima of second derivatives.
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acids (DNA, mRNA) for patients with melanoma46 and lymphoma47. Manifestations of these alteration in bio-
molecules (serological markers) are most likely for the tumor-induced alteration in identifying spectral markers.

Herein, this is an experimental demonstration of rapid and reliable spectroscopic technique for the discrimi-
nation of B16 melanoma and EL4 lymphoma mice from their control types. B16 murine tumor model remains an 
indispensable for metastasis and therapeutic studies of human melanoma skin cancer48. Similarly, development 
of EL4 murine tumor model considered as a huge benefit49 to the human NHL research cancer. This work is thus 
expected to lay a foundation for further research which could lead to the development of diagnostic techniques 
for future health care of cancer patients of melanoma and lymphoma using body fluid samples that can be col-
lected with relatively low risks. It is thus critical to extend the present study to human patients for the assessment 
of disease status and personalized drug management. Furthermore, the study of temporal variation in spectral 
marker signatures is important for tumor grading, sub-typing and assessing the heterogeneity. Further work is in 
progress (i) to investigate temporal variation in serum components along with the progression of the disease by 
increasing sample size, (ii) identify the alteration in spectral markers using human patients, and (ii) to integrate 
data analyzing software into the narrow multiband detector. After setting a calibration curve of unique spectral 
markers for NHL or subcutaneous melanoma, bulky instrumentation will be avoided using specific multiband 
infrared detectors capable of simultaneous detection in the expected narrow bands. Recent advances in infrared 
technology allow the operation of multiband detectors at room temperature50. Complex statistical analysis of 
identifying spectral markers of NHL or melanoma can also be integrated into the clinical tool as a software appli-
cation into the computer program. In terms of clinical application, we can anticipate that the potential technology 

Figure 6.  The integral sum of Gaussian energy profiles used to fit experimental curve within 1000–1140 cm−1. 
(a) The calibration curve obtained after adding integral values of energy profiles used to fit experimental 
curves. The sum of integral values of control groups cluster within the approximate range 12–14, B16 covers the 
range 15–17 and EL4 covers 15–18. (b) Bar graph representation of average value of integral sum which shows 
significant difference between control and tumorigenic case.

Feature

Spectral deconvolution Amide I and II Absorbance values

Amide I 1600–1700 cm−1
Mixed region 
1000–1140

Position 
amide I

Ratio: abs 
Amide I/II

νas (PO2
−) 

~1212 cm−1
C-H def. 
~1335 cm−1

Integral values Ratio 
(α/β) Integral sumα-helix β-sheet

Control 40.6–44.9 16.3–19.3 2.2–2.7 12.2–13.9 1640–1645 1.10–1.13 0.42–0.44 0.54–0.59

B16 38.9–40.2 19–20.2 1.9–2.1 14.8–16.8 1638–1644 1.10–1.15 0.42–0.45 0.54–0.59

EL4 38.1–39.9 19.1–21.1 1.7–2.1 14.8–17.1 1636–1642 1.12–1.15 0.43–0.46 0.58–0.59

Table 2.  Quantified values of discriminatory features. Clear separation can be seen between control and 
cancerous cases (both B16 and EL4) while comparing integral values of α-helix, β-sheet structure components, 
and their ratios. Similarly, altered position of amide I peak, amide I/amide II ratio and absorbance values at 
1212 and 1335 cm−1 show significant difference only between EL4 and control.
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can be further developed into a personalized diagnostic tool in which patient-to-patient and within a patient over 
time (due to health conditions or other factors) differences in molecular signatures would allow the assessment 
of disease status and personalized drug management. To be used as a patient to patient screening test, a normal 
range of spectral markers unique to the particular disease should be set by using a statistically significant set of 
normal serum samples. These average normal values can be incorporated into the program which can identify 
the deviations of the test sample from the average values. Technological advancement of ATR-FTIR spectroscopy 
of serum sample to discriminate normal and tumorous conditions will thus supports to increase compliance rate 
eligible population for tumor screening and to make physician decision for advanced histological examination 
using biopsy.

Materials and Methods
Mouse tumor models.  C57BL/6 J mice (6–8 weeks, 20–22 g, the Jackson Laboratory) were engrafted with 
B16 melanoma or EL4 lymphoblast via subcutaneous (s. c.) route with 2 × 105 of each cell line. B16 and EL4 cells 
were obtained from American Type Cultural Collection (ATCC) and maintained in DMEM with 10% FBS prior 
to use. Mice were euthanized after 3 weeks of tumor inoculation, when tumors were larger than 1000 mm3 in 
size (see Fig. 1, inset (i)). Serum samples from tumor-bearing mice and healthy mice were isolated and stored in 
−80 °C until analysis. All experiments using animals described in this study were approved (protocol number: 
A17015) by the Institutional Animal Care and Use Committee (IACUC) of Georgia State University, Atlanta, GA 
and experiments were conducted according to the guideline of Office of Laboratory Animal Welfare (OLAW), 
Assurance number: D16–00527(A3914-01).

Fourier transform infrared spectroscopy.  A Bruker Vertex 70 FTIR spectrometer series with KBr beam 
splitter and Deuterated Tri-Glycine Sulfate (DTGS) pyroelectric detector was used. The spectrometer was fixed 
with an MVP-Pro ATR accessory from Harrick-Scientific having diamond crystal (1 mm × 1.5 mm) as an inter-
nal reflection element and configured to have a single reflection of the infrared radiation. In all measurements, 
medium Blackman-Harris apodization function was employed with a resolution of 4 cm−1 with zero filling factor 
4 to provide the best resolving ability with a minimum signal-to-noise ratio. Furthermore, for the optimization of 
the detector response and for the prevention of its saturation, aperture size is set to 2.5 mm.

Sampling and scanning.  ATR crystal was first cleaned using sterile phosphate buffered saline followed 
by ethanol. A cleanness test was then conducted, where the absorbance spectrum obtained without a sample to 
ensure it have no signal peaks higher than the environmental noise level. Background measurement was then 
performed prior to each spectral measurement by scanning a clean diamond crystal surface, and having its value 
subtracted from the sample signal spectrum. After setting these parameters, serum samples of one microliter 
volume were deposited on the crystal surface and allowed to air dry (~8 minutes) at room temperature. As the 
scanning runs, an evanescent wave with an approximate penetration depth of ~2.5 microns (for mid-IR) interacts 
with the sample. Each sample was scanned multiple times to get eight (or more) high-quality spectral curves, and 
the last six reads of the 100 co-added scans for each sample (total of 600 scans) were averaged.

Spectral analysis.  Using OPUS 7.2 spectroscopy software, all the spectra were internally normalized12 by 
scaling within the fingerprint region 1800–900 cm−1. In these normalized spectra, the absorbance values of amide 
I band position (~1642 cm−1) is 2 AU (corresponding to ~99% absorption) according to the Beer-Lambert algo-
rithm. The significance of difference in absorbance values between control and diseased cases at different spec-
tral marker positions were then tested by using the student’s t-test (two-tailed unequal variance) p-values. The 
significance test is then followed by the discrimination of protein secondary structures by deconvolution of the 
spectra into Gaussian function energy bands within the amide I band position 1700–1600 cm−1. Using OriginPro 
2015 software, Hierarchical Cluster Analysis (HCA) was employed to identify the similarities between the spectra 
using the range of 1140–1000 cm−1. This spectral region has been studied before through the use of tissue biopsy 
while discriminating lymphoma43 and melanoma45 from control groups. Spectral deconvolution within the range 
was also completed to quantify spectral dissimilarity.

References
	 1.	 Lens, M. & Dawes, M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. British 

Journal of Dermatology 150, 179–185 (2004).
	 2.	 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA: a cancer journal for clinicians 66, 7–30 (2016).
	 3.	 Garbe, C. & Leiter, U. Melanoma epidemiology and trends. Clinics in dermatology 27, 3–9 (2009).
	 4.	 Fisher, S. G. & Fisher, R. I. The epidemiology of non-Hodgkin’s lymphoma. Oncogene 23, 6524–6534 (2004).
	 5.	 Howlader, N. et al. (2016).
	 6.	 Jerant, A. F., Johnson, J. T., Sheridan, C. & Caffrey, T. J. Early detection and treatment of skin cancer. American family physician 62, 

357–386 (2000).
	 7.	 Shipp, M. et al. A predictive model for aggressive non-Hodgkin’s lymphoma. New England Journal of Medicine 329, 987–994 (1993).
	 8.	 Bellisola, G. & Sorio, C. Infrared spectroscopy and microscopy in cancer research and diagnosis. Am J Cancer Res 2, 1–21 (2012).
	 9.	 Movasaghi, Z. & Rehman, S. & ur Rehman, D. I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied 

Spectroscopy Reviews 43, 134–179 (2008).
	10.	 Titus, J., Viennois, E., Merlin, D. & Unil Perera, A. Minimally invasive screening for colitis using attenuated total internal reflectance 

fourier transform infrared spectroscopy. Journal of biophotonics (2016).
	11.	 Titus, J., Ghimire, H., Viennois, E., Merlin, D. & Perera, A. Protein secondary structure analysis of dried blood serum using infrared 

spectroscopy to identify markers for colitis screening. Journal of Biophotonics (2017).
	12.	 Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nature protocols 9, 1771–1791 (2014).
	13.	 Wood, B. et al. Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous 

epithelium. Gynecologic oncology 93, 59–68 (2004).



www.nature.com/scientificreports/

8SCienTifiC REPOrTS | 7: 16993  | DOI:10.1038/s41598-017-17027-4

	14.	 Lewis, P. D. et al. Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC cancer 10, 640 (2010).
	15.	 Backhaus, J. et al. Diagnosis of breast cancer with infrared spectroscopy from serum samples. Vibrational Spectroscopy 52, 173–177 

(2010).
	16.	 Lima, C. A., Goulart, V. P., Côrrea, L., Pereira, T. M. & Zezell, D. M. ATR-FTIR spectroscopy for the assessment of biochemical 

changes in skin due to cutaneous squamous cell carcinoma. International journal of molecular sciences 16, 6621–6630 (2015).
	17.	 Fujioka, N., Morimoto, Y., Arai, T. & Kikuchi, M. Discrimination between normal and malignant human gastric tissues by Fourier 

transform infrared spectroscopy. Cancer Detection and Prevention 28, 32–36 (2004).
	18.	 Gazi, E. et al. Applications of Fourier transform infrared microspectroscopy in studies of benign prostate and prostate cancer. A pilot 

study. The Journal of pathology 201, 99–108 (2003).
	19.	 Rigas, B., Morgello, S., Goldman, I. S. & Wong, P. Human colorectal cancers display abnormal Fourier-transform infrared spectra. 

Proceedings of the National Academy of Sciences 87, 8140–8144 (1990).
	20.	 Theophilou, G., Lima, K. M., Martin-Hirsch, P. L., Stringfellow, H. F. & Martin, F. L. ATR-FTIR spectroscopy coupled with 

chemometric analysis discriminates normal, borderline and malignant ovarian tissue: classifying subtypes of human cancer. Analyst 
141, 585–594 (2016).

	21.	 Ollesch, J. et al. It’s in your blood: spectral biomarker candidates for urinary bladder cancer from automated FTIR spectroscopy. 
Journal of biophotonics 7, 210–221 (2014).

	22.	 Sommer, A. J., Tisinger, L. G., Marcott, C. & Story, G. M. Attenuated total internal reflection infrared mapping microspectroscopy 
using an imaging microscope. Appl. Spectrosc. 55, 252–256 (2001).

	23.	 Kazarian, S. G. & Chan, K. A. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 138, 
1940–1951 (2013).

	24.	 Titus, J., Filfili, C., Hilliard, J. K., Ward, J. A. & Unil Perera, A. Early detection of cell activation events by means of attenuated total 
reflection Fourier transform infrared spectroscopy. Applied Physics Letters 104, 243705 (2014).

	25.	 Chan, K. A. & Kazarian, S. G. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. 
Chemical Society Reviews 45, 1850–1864 (2016).

	26.	 Baker, M. J. et al. Developing and understanding biofluid vibrational spectroscopy: a critical review. Chemical Society Reviews 45, 
1803–1818 (2016).

	27.	 Orphanou, C.-M. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic science 
international 252, e10–e16 (2015).

	28.	 Meurens, M., Wallon, J., Tong, J., Noel, H. & Haot, J. Breast cancer detection by Fourier transform infrared spectrometry. Vibrational 
spectroscopy 10, 341–346 (1996).

	29.	 Gazi, E. et al. A correlation of FTIR spectra derived from prostate cancer biopsies with Gleason grade and tumour stage. European 
urology 50, 750–761 (2006).

	30.	 Gajjar, K. et al. Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy 
coupled with discriminant analysis. Analytical Methods 5, 89–102 (2013).

	31.	 Hands, J. R. et al. Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform 
infrared spectroscopy. Journal of neuro-oncology 127, 463–472 (2016).

	32.	 Hands, J. R. et al. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour 
severity from serum samples. J. Biophotonics 7, 189–199 (2014).

	33.	 Lens, M. & Newton-Bishop, J. An association between cutaneous melanoma and non-Hodgkin’s lymphoma: pooled analysis of 
published data with a review. Annals of oncology 16, 460–465 (2005).

	34.	 Byler, D. M. & Susi, H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25, 469–487 
(1986).

	35.	 Yang, H., Yang, S., Kong, J., Dong, A. & Yu, S. Obtaining information about protein secondary structures in aqueous solution using 
Fourier transform IR spectroscopy. Nature protocols 10, 382–396 (2015).

	36.	 Kong, J. & Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta biochimica et biophysica 
Sinica 39, 549–559 (2007).

	37.	 Surewicz, W. K., Mantsch, H. H. & Chapman, D. Determination of protein secondary structure by Fourier transform infrared 
spectroscopy: a critical assessment. Biochemistry 32, 389–394 (1993).

	38.	 Lu, R. et al. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared 
fiberoptic sensors. Analyst 140, 765–770 (2015).

	39.	 Barth, A. Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1767, 1073–1101 (2007).
	40.	 Chirgadze, Y. N. & Nevskaya, N. Infrared spectra and resonance interaction of amide‐I vibration of the antiparallel‐chain pleated 

sheet. Biopolymers 15, 607–625 (1976).
	41.	 Goormaghtigh, E., Cabiaux, V. & Ruysschaert, J.-M. In Physicochemical methods in the study of biomembranes 405–450 (Springer, 

1994).
	42.	 Hammody, Z., Sahu, R. K., Mordechai, S., Cagnano, E. & Argov, S. Characterization of malignant melanoma using vibrational 

spectroscopy. The Scientific World Journal 5, 173–182 (2005).
	43.	 Andrus, P. G. & Strickland, R. D. Cancer grading by Fourier transform infrared spectroscopy. Biospectroscopy 4, 37–46 (1998).
	44.	 Bogomolny, E., Huleihel, M., Suproun, Y., Sahu, R. K. & Mordechai, S. Early spectral changes of cellular malignant transformation 

using Fourier transform infrared microspectroscopy. Journal of biomedical optics 12, 024003-024003–024009 (2007).
	45.	 Mordechai, S. et al. Possible common biomarkers from FTIR microspectroscopy of cervical cancer and melanoma. Journal of 

microscopy 215, 86–91 (2004).
	46.	 Vereecken, P., Cornelis, F., Van Baren, N., Vandersleyen, V. & Baurain, J.-F. A synopsis of serum biomarkers in cutaneous melanoma 

patients. Dermatology research and practice 2012 (2012).
	47.	 Legouffe, E. et al. C-reactive protein serum level is a valuable and simple prognostic marker in non Hodgkin’s lymphoma. Leukemia 

& lymphoma 31, 351–357 (1998).
	48.	 Overwijk, W. W. & Restifo, N. P. B16 as a mouse model for human melanoma. Current Protocols in Immunology, 20.21. 21-20.21. 29 

(2001).
	49.	 Daydé, D. et al. Tumor burden influences exposure and response to rituximab: pharmacokinetic-pharmacodynamic modeling using 

a syngeneic bioluminescent murine model expressing human CD20. Blood 113, 3765–3772 (2009).
	50.	 Jayaweera, P. et al. Uncooled infrared detectors for 3–5 μ m and beyond. Applied Physics Letters 93, 021105 (2008).

Acknowledgements
Financial support from the following entities are much appreciated: U.S. Army Research Office W911 NF-15-
1-0018 and Air force Office of Scientific Research 55655-EL-DURIP to UP; Molecular Basis of Diseases (MBD) 
program at GSU fellowship award to HG; National Institute of Health Grant No. R01 AI106839 to YL; Center for 
Diagnosis and Therapeutics (CDT) program at GSU fellowship award to MV. We are thankful to Georgia State 
University Animal Resources Program for facilitating animal experiments.



www.nature.com/scientificreports/

9SCienTifiC REPOrTS | 7: 16993  | DOI:10.1038/s41598-017-17027-4

Author Contributions
A.G.U.P. and Y.L. conceived and designed the experiments. H.G. performed the spectroscopic measurements. 
M.V. and Z.B. performed all the biological assays and mice experiments. H.G. and A.G.U.P. analyzed the data. 
H.G. and A.G.U.P. wrote the manuscript and prepared all the figures. All authors approved the final version of 
the paper.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-17027-4.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-17027-4
http://creativecommons.org/licenses/by/4.0/

	ATR-FTIR spectral discrimination between normal and tumorous mouse models of lymphoma and melanoma from serum samples

	Results

	Discrimination of absorbance values. 
	Protein secondary structures analysis by deconvolution of amide I band. 
	Amide I and II absorbance values. 
	Nucleic acids and carbohydrate analysis. 

	Discussion

	Materials and Methods

	Mouse tumor models. 
	Fourier transform infrared spectroscopy. 
	Sampling and scanning. 
	Spectral analysis. 

	Acknowledgements

	Figure 1 The discriminatory region of infrared absorbance spectra.
	Figure 2 Protein secondary structure analysis.
	Figure 3 Plots of the protein secondary structures (α-helix, β-sheet) and their ratio.
	Figure 4 Dendrogram of hierarchical cluster analysis.
	Figure 5 Analysis of carbohydrates and nucleic acids.
	Figure 6 The integral sum of Gaussian energy profiles used to fit experimental curve within 1000–1140 cm−1.
	Table 1 Discriminatory infrared spectral bands of dried serum with biomolecular assignments (taken from references26,28–32).
	Table 2 Quantified values of discriminatory features.




