Physics 8510

Problem Set 8

1) GaAs has a conduction band that can be described near the band edge by an expression in the form $E(k)=\hbar^{2} k^{2} / 2 m^{*}$, where $\mathrm{m}^{*}=0.067 \mathrm{~m}_{0}$. An electric field of 10 $\mathrm{kV} / \mathrm{cm}$ (along the x -axis is applied at time $\mathrm{t}=0$ to an electron at the bottom of the conduction band. What is the energy of the electron after a time interval of $1,2,10$ picoseconds. (Band structure is periodic in the reciprocal lattice space. If the electron exceeds the zone edge k value, it will undergo a reflection by a RLV-Reciprocal Lattice Vector.)
2) Consider a square lattice in 2-d with a background potential $U(x, y)=U_{0} \cos 2 \pi x / a \cos 2 \pi y / a$, where $\mathrm{U}_{0}=2.0 \mathrm{eV}$. Set up the 2 x 2 secular equation to calculate the bandgap at the point $(\pi / a, \pi / a)$ of the Brillouin zone. (Hint: Potential energy contains the 4 reciprocal lattice vectors)
3) In GaAs, once the channel dimensions are less than $1000 \AA$, much of the transport occurs without scattering. In such ballistic transport, the electron climbs up along the E vs K diagram in accordance with the effective Newton's equation of motion.

Assume a parabolic band relation $E=\hbar^{2} k^{2} / 2 m^{*}$ with $\mathrm{m}^{*}=0.067 \mathrm{~m}_{0}$. Calculate the electron transit time and final energy for a transit length of $0.1 \mu \mathrm{~m}$ and an electric field of $10^{3} \mathrm{~V} / \mathrm{cm}$ and $10^{5} \mathrm{~V} / \mathrm{cm}$.
4) Consider a 1-d solid of length $L=N a$ made up of N diatomic molecules, the interatomic spacing within a molecule is $b(b<a / 2)$. The centers of adjacent molecules are a distance a apart. Potential energy can be represented as a sum of delta functions centered on each atom with A a positive quantity and $n=0,1,2, \ldots \ldots . . N-1$. (shown below)

$N \sim 1$
 $\mathbf{v}=-\mathrm{A} \sum_{n=0}[\delta(\mathbf{x}-\mathbf{n a}+\mathbf{b} / \mathbf{2})+\delta(\mathbf{x}-\mathbf{n a}-\mathbf{b} / \mathbf{2})]$

(a) Consider free electrons $(\mathrm{V}=0)$ in the solid and periodic boundary conditions. Derive the allowed values of the electron wave vectors k , and normalize the wave function.
(b) Expressing the potential as a Fourier series $V=\sum V_{G} e^{i G x}$, find the allowed values of G and the coefficients V_{G}.
(c) Assuming A to be small, show that for certain values of k there are energy gaps. Derive a formula for the gaps and show in particular that the gap energy at the top of the first zone is proportional to $\cos (\pi b / a)$. [Hint: use the result of (b)]
(d) Derive an expression for the number of states that are in the first zone. If each atom has one electron, will the substance be a conductor or an insulator? (Hint: Each state corresponds to 2 spin values. N diatomic molecules give 2 N atoms each atom contributes one electron. If the first zone states are not completely full it will be a conductor, if completely full an insulator.)
(e) If $\mathrm{b}=\mathrm{a} / 2$, how will the answers ($\mathrm{a}-\mathrm{d}$) change?

Previous Home Next

