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Rolling Motion:  Rolling without slipping
• When an object rolls without slipping, the axle translates by one circumference 

when the object has made one revolution.  Thus, the angular velocity and linear 
velocity are related according to:

vcenter = ωR
• Note also that no slipping means that the point of the rolling object in contact with 

the surface has zero linear velocity; otherwise the object would be slipping (spinning t e su ace as e o ea e oc ty; ot e se t e object ou d be s pp g (sp g
or skidding).

• The kinetic energy of an object rolling without slipping is partly in the linear motion 
of the center of mass and partly in the rotational motion about the center:

½ 2 ½ 2K = ½mv2 + ½ Iω2

• On pages 366 & 367, the book discusses a downhill race between objects of the 
same radius and the same mass but with different mass distributions (hollow vs. 
solid, etc.).  The point is that different distributions of the same mass lead to different 
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, ) p
values of I and thus different amounts of the total energy in rotation vs. linear.  The 
more in the linear motion, the faster the object moves.,



Consider the objects to the left:
• For the hoop, I = MR2

• For the cylinder, I = ½MR2

• For the solid sphere I = 2/5MR2

• For a hollow sphere, I = ⅔MR2

• etc. all have a number times MR2 so the 
values can be summarized as I = cMR2, 
where c is a fraction reflecting the values forwhere c is a fraction reflecting the values for 
the specific shapes.

• Thus, if all have the same mass and radius, then the hoop has the largest value of I 
and the solid sphere has the lowest.  As a consequence, when rolling without slipping 
with the same kinetic energy the solid sphere will have the highest linear speed andwith the same kinetic energy, the solid sphere will have the highest linear speed and 
the hoop will have the lowest. 

• (The particle has no shape and therefore no 
rotational kinetic energy.)⎛ ⎞

T g

2
2 2 2 21 1 1 1

ΔK  = - ΔU  

R
• If the objects begin from rest and roll without 

slipping down the incline of height h, then they 
arrive at the bottom with speed as shown to the 
left.

( ) ( )
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R Mv  + Iω  = Mv + cM v = Mgh
R

2ghM 1+ c v = Mgh v =
1+ c
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( )
2ghv =
1+ c



Example: analyze the previous case using torque methods
Torque method 1 basic points:Torque method 1, basic points:

• On the incline, the object rotates about the point of 
contact (P in the diagram).  As a result, it is necessary 
to use the rotational inertia about that point in the 

l i Th dj t t i li ti f th
G

F analysis.  The adjustment requires application of the 
parallel axis theorem:  IP = cMR2 + MR2 = (c + 1)MR2

• The torque acting on the object comes from the 
component of its weight down the incline (Mgsinθ) 

&gF

acting about the point of contact with the lever arm R: 
torque = (Mgsinθ)R = IPα.

• Because acceleration = Rα, we have 
a = Rα = (Mgsinθ)R2 / I = gsinθ / (c + 1)a = Rα = (Mgsinθ)R2 / IP = gsinθ / (c + 1)

• Finally, because a is constant and the objects move the distance d = h/sinθ
along the incline as they drop by h (the hypotenuse), the final speed is given 
by (vf)2 = 0 + 2ad = 2gh / (c + 1), which is the same result obtained from 
the energy approach.
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Example: analyze the previous case using torque methods
Torque method 2 basic points:Torque method 2, basic points:

• On the incline, the object rotates about the center of mass, and 
it translates down the incline with acceleration a (at the 
instantaneous speed v).  In this case, the appropriate rotational 
inertia is that about the cm (the center of the object). Icm = cMR2

&

G
gF

( j ) cm

• The torque about the center of the object comes from the force 
of friction acting up the incline at point P. (The component of its 
weight acts at the center and thus creates no torque about this 
point.) The frictional force creates torque about the center with 

G
f

lever arm R: torque = fR = Icmα.
• Because acceleration = Rα, for the torque relation, we have 

a = Rα = fR2 / Icm = f / cM
• For this case it also is necessary to use the force relations Down the incline• For this case, it also is necessary to use the force relations.  Down the incline,

Fnet = Fg// - f = Mgsinθ – f = Ma → f = M(gsinθ – a).  
• Combining these two yields:

a = gsinθ / (c + 1)
• Finally, because a is constant and the objects move the distance d = h/sinθ along the incline 

as they drop by h (the hypotenuse), the final speed is given by (vf)2 = 0 + 2ad = 2gh / (c + 1), 
which is the same result obtained from the energy approach.
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USING VECTORS TO DESCRIBE ROTATIONAL 
KINEMATICS AND DYNAMICS:KINEMATICS AND DYNAMICS:

• “Clockwise” and “counterclockwise” are useful for 
describing rotational motion (ω for example);

• Unfortunately, these terms are difficult to use 
computationally—consequently, for that purpose, it is 
useful to define vector representations of these 
quantities with the approach shown to the left.

• In our discussion of angular momentum below, we will see theIn our discussion of angular momentum below, we will see the 
value of systematic descriptions based on this approach.

• This also leads to use of the vector cross product.

11 / 02 / 2010, P2211K



THE CROSS PRODUCT OF VECTORS:
In connection with Work, we introduced the dot, or scalar, product of vectors:p

A second method of multiplying vectors is the cross product, the result of 
which also is a vector:

θ
G G
i ABA B = ABcos

×
G GG
A B = C, where

θ

×
G G

AB

A B  C, where 

C = ABsin , perpendicular to both A and B

TORQUE & CROSS PRODUCTS:
• Torque now can be re stated using the cross product formalism:• Torque now can be re-stated using the cross-product formalism:

• This allows combining multiple sources of torque into a net vector using 
standard vector addition methods:

GGGτ = r × F

∑G G G G G
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...  ∑G G G G G
net 1 2 3 i
τ = τ + τ + τ + = τ



ANGULAR MOMENTUM:
The fundamental definition of angular momentum (L) is as follows:The fundamental definition of angular momentum (L) is as follows:

×
G G GL = r p

For the motion of rigid bodies, this translates into the relations:GG dL&  ω τ α=
G GG dLL = I  I  = 

dt
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CONSERVATION OF ANGULAR MOMENTUM:
The relation is like that for linear momentum:

ω ω⇒f i f f i iL  = L       I  = I

Example: A 2.0 kg, 20-cm-diameter turntable rotates at 100 rpm on frictionless 
bearings. Two 500 g blocks fall from above, hit the turntable simultaneously at 
opposite ends of a diagonal, and stick.
• What is the turntable's angular velocity, in rpm, just after this event?What is the turntable s angular velocity, in rpm, just after this event?

This event amounts to a completely inelastic "rotational collision."
Initially, the two blocks have no angular momentum.  However, adding 
them to the rotating turntable (a disk) increases its Rotational Inertia.

21
disk disk disk2

2
block disk

2 21
disk blocks disk disk block disk2

Initial I = I  = M R

Each block adds I = M R  because they attach at the edge of  the disk.

Final I = I  + I = M R + 2M R
Thus conservation of angular momentum and this information lead to :Thus, conservation of  angul

( ) ( )

( )

ω ω ω ω

ω ω ω
⎡ ⎤
⎢ ⎥

2 2 21 1
initial initial disk disk initial disk disk block disk final final final2 2

21
disk disk2

ar momentum and this information lead to :

I  = M R = M R + 2M R = I

and

M R
= = ( )⎡ ⎤

⎢ ⎥
1

disk2 M
= 50 rpm
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( )
( )

ω ω ω⎢ ⎥
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final initial ini2 21
disk disk block disk2

= =
M R + 2M R

( )
( )⎢ ⎥
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tial 1
disk block2

= 50 rpm
M + 2M



Assignment:Assignment:   
• Continue reading and working on Chapter 12; 

especially you should review the book’s 
k d t lworked-out examples.

• Begin reading Chapter 13 with a focus on the 
more general form for gravitational potential g g p
energy and the “escape velocity,” section 13-5.
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