
P2211K
10 / 19 / 2010

10 / 19 / 2010, P2211K



Chapters 10 & 11:  
Work and energy: Still another way to describe thingsWork and energy: Still another way to describe things.
• Basic Idea:  When an object is acted on by forces, the acceleration (or deceleration) leads to gain 

(or loss) of kinetic energy as its speed changes.
• Definition: Kinetic energy K = ½mv2. (K is a scalar and not a vector as it depends only on the 

object’s speed )object s speed.)

• Example of energy and force relations for cases of constant acceleration (as is appropriate for 
gravity near the Earth’s surface).

o An object of mass m is acted on by the force F = ma as it travels the distance d Over thiso An object of mass m is acted on by the force F = ma as it travels the distance d.  Over this 
distance, the speed changes from its initial value vi to its final value vf:

2 2
f i

From the set of  kinematic relations (Chapters 1 - 4), we know that
          v  = v  + 2ad.  
The connection between K and F is revealed by the following algebraic steps :

( ) ( ) ( )         ⇒2 2 2 21 1
f i f i2 2

The connection between K and F is revealed by the following algebraic steps :
1.  Divide both sides by 2 and multiply both sides by the mass m : 

m mv  =  v  + 2ad   mv  = mv  + ma d
2 2

( ) ( ) ( )         ⇒2 2 2 21 1 1 1
f i f i2 2 2 2

2.  Rearrange algebraically and recognize that ma = F : 

mv  = mv  + ma d  mv  - mv  = F d

( ) ( ) ( )
21

2

2 21 1

3.  Recognize that  mv  = K :
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( ) ( ) ( )         ⇒ Δ2 21 1
f i f i2 2mv  - mv  = F d  K  - K  = K = Fd     

  Δ ×Thus, K, the change in kinetic energy, equals (is the result of) F d !!



The idea of Potential Energy
• The observation that ΔK = F×d for the case of constant acceleration (constant (

force) will be developed more fully in Chapter 11 when the concept of work will be 
introduced along with the work-energy theorem.

• For now, we will restrict our discussion to the effects of gravity near the surface of 
the earth This will allow us to introduce the concept of potential energythe earth.  This will allow us to introduce the concept of potential energy.

• For this discussion, we need to recognize two things: gravity acts only in the 
negative vertical direction (-y), and the distance over which the object travels while 
being acted on by the force is related to the coordinates by d = yf – yi.
With this recognition we have:• With this recognition, we have:

( ) ( ) ( )( ) ( ) ( ) ( )2 21 1
f i G f i f i i f2 2mv  - mv  = F d = F y  - y  = m -g  y  - y = mg y  - y

or,
2 21 1
f i i f2 2mv  - mv = mgy  - mgy

• Note that the final speed above is greater when the object moves from higher 
positions to lower ones (i.e., vf > vi if yi > yf) . This corresponds to our experience 
that an object picks up speed (and thus kinetic energy) as it moves from higherthat an object picks up speed (and thus kinetic energy) as it moves from higher 
to lower locations.  With this recognition, we have the idea that the object has the 
potential “to acquire kinetic energy” depending on its height.

• Thus, the expression mgy is referred to as the gravitational potential energy 
(GPE U ) f th bj t ith t h i ht
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(GPE, or Ug) of the object with mass m at height y.



Potential and Kinetic Energy
• The relations above:

⇒Δ Δ ⇒Δ Δ

2 21 1
f i i f2 2

f i i f

mv  - mv = mgy  - mgy

can be rewritten as 
K - K = U - U K = - U K + U = 0⇒Δ Δ ⇒Δ Δ

⇒

f i gi gf g g

f gf i gi f i

K  K   U   U  K  U    K + U  0
or,
K  + U  = K  + U    TE = TE
if the"total energy" is defined as TE = K + U gif  the "total energy" is defined as TE = K + U

• Interpretation of these relations:
o ΔK = - Δ Ug indicates that the changes in K and Ug are opposite; that is, when one 

increases the other decreases;;
o ΔK + Δ Ug = 0 indicates that the increase in one is exactly the same amount as the 

decrease in the other;
o The relation TEi = TEf; indicates that the total energy of the system remains constant 

during the motion That is the total energy is conservedduring the motion.  That is, the total energy is conserved.

• Very important point---Only CHANGES in Ug are important:
o Obviously, the value of Ug depends on the origin chosen for the coordinate system: for 

one choice it might be +20 m and for another it might be 0.
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o Thus, TE and Ug are useful  only as concepts for working purposes while obtaining TEi
and TEf; their absolute values are not important.



Working with Kinetic and Potential Energy

Units of energy: 1 kg (m2 / s2 ) = 1 Nm = 1 JouleUnits of energy: 1 kg (m2 / s2 ) = 1 Nm = 1 Joule

Problem 10-5.  A boy reaches out of a window and tosses a ball straight up with a 
speed of 10 m/s. The ball is 20 m above the ground as he releases it. Use energy 
to find:
a. the ball's maximum height above the ground;
b. the ball's speed as it passes the window on its way down;
c. the speed of impact on the ground.

Principle: TE is the same at all locations.

a. the ball's maximum height above the ground;
( )2 2 2 21 1

i i i i2 2TE = mv  + mgy = m v  + gy = m(250 m /s )

( )( )

∴

2 2 2 21
@max @max @max2@max

@max

@max

TE  = TE = m(250 m /s ) = mv  + mgy = m 10 m/s y

because v = 0

   y  = 25 m

b. the ball's speed as it passes the window on its way 
down;

c the speed of impact on the ground
i i iThis is @ y  again, and TE = TE , so v = v .
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c. the speed of impact on the ground.
( )

∴

2 2 2 21 1
f f f2 2

f

TE = m(250 m /s ) = mv  + mgy = m v  + 0

  v  = 500 m/s = 22.4 m/s



Conservation of energy, continuedgy,
• What if the motion is not strictly vertical and is along a 

sloping (or curved) path?
• The object to the left is on a frictionless incline and slides 

along it the distance d It slides because its weight (F ) hasalong it the distance d.  It slides because its weight (FG) has 
a component along the incline given by FG// = mg(sinθ).  

• In addition, the distance d is related o tthe height of the 
incline by h/d = sinθ, or d = h/sinθ.

• Above, we found that ΔK = F×d, so in this case, ΔK = F×d = mg(sinθ) × h/sinθ = mgh.
• Since h = yi– yf, this evaluates to ΔK = mg(yi– yf) = - ΔUG.
• Thus, for the incline, the change in kinetic energy due to gravity, and the object’s 

h i d d d l h f i i h i l di i h i hchange in speed, depends only on how far it moves in the vertical direction---h is the 
important distance, and not d.

• On pp. 274-275, the book uses this model to generalize this result for motion on 
curved paths (the “roller-coaster”).p ( )

Question: How long does it take an object to fall the distance h directly 
vs. sliding down the incline the distance d?
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A general principle for gravitational potential energy (Ug): The change in 
potential energy depends only on the change in height and not on the pathpotential energy depends only on the change in height and not on the path 
actually traveled (if no other forces, such as friction, act on the object).
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Conservation of energy, continued: example of a curved path
P bl 10 13 A 1500 k t li t 16 / dd l t f hilProblem 10-13. A 1500 kg car traveling at 16 m/s suddenly runs out of gas while 

approaching the valley shown in the figure.
• What will be the car's speed as it coasts into the gas station on the other 

side of the valley?

• Analysis: (Friction is not a factor.)  TE for the car is the 
same at all points along the path.
Th TE @ th t t TE @ t ti• Thus, TE @ the start = TE @ gas station.

( ) ( )( )

( ) ( ) ( )

⎡ ⎤
⎣ ⎦

⎡ ⎤

22 2 2 21 1
i i2 2

2 2 2 2 21 1

TE = Mv  + Mgy = M 16 m/s  + 10 m/s 10 m = M(228 m /s )

TE M(228 / ) M + M M + 10 / 15( ) ( ) ( )⎡ ⎤⎣ ⎦

⇒

2 2 2 2 21 1
f f f2 2

2 2 2
f f

TE = M(228 m /s ) = Mv  + Mgy = M v  + 10 m/s  15 m

v = 156 m /s   v  = 156 m/s = 12.5 m/s
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A variable force: springs, elastic forces, and Hooke’s “Law”
D i ti F kΔ Th f i ti ll t f t• Description: F = -kΔs.  The force is proportionally greater for greater 
stretch / compression, it is opposite to the direction of stretch / compression 
(as described by the “-”), and “k” is the “force constant.”.  

• This type of force plays a very important role in modeling 
physical behaviors of complex systems.  

• For example, the stretching behavior of chemical bonds 
often is described using the terminology of “force constant.”  
(This type of force also leads to oscillations described by(This type of force also leads to oscillations described by 
“simple harmonic motion” and is basic to the way infrared 
spectroscopy is used to describe molecular vibrations.) 

• In addition, Hooke’s law plays a major role in the way 
structural engineers describe the behavior of buildingsstructural engineers describe the behavior of buildings, 
bridges, etc. when they are “under load.”  This is an 
important component of structural design and predicting 
structural stability—how much they will “deflect” and how 
they will vibratethey will vibrate.

• A simple example—the spring scale:  A 6 kg object is attached to the end of a 
spring characterized by k = 20×102 N/m.  How much does the spring stretch?       

Δs = F / k = Weight / k = (6 kg) (10 m/s2) / 20×102 N/m = 3 ×10-2 m  = 3 cm  
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Potential energy associated with stretched / compressed springs:
• In equations 10 27 through 10 37 the book uses a calculus procedure based on the• In equations 10.27 through 10.37, the book uses a calculus procedure based on the 

chain rule to calculate the relation between the kinetic energy an object gains and 
the “un-stretching” of a spring with the result that Us = ½k(Δs)2.

• (This same result can be obtained from Work concepts and we’ll see that in Chapter(This same result can be obtained from Work concepts and we ll see that in Chapter 
11.)
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Problem 10-41. A 50.0 g ice cube can slide without friction up and down a 
30 0° slope The ice cube is pressed against a spring at the bottom of the30.0 slope. The ice cube is pressed against a spring at the bottom of the 
slope, compressing the spring 10.0 cm The spring constant is 25.0 N/m.

• When the ice cube is released, what distance will it travel up the slope before 
reversing direction?g

• Compression = Δs = 10 cm

• h = d(sinθ) = d(sin30°)   d   
• At start, v =0 & at max height v = 0

• So, max height occurs when Ug = Us

• ½k (Δs)2 = mgh = mgd(sin30°)

 h 

½k (Δs)  mgh  mgd(sin30 )

• And d = [½k (Δs)2 ] / [mg(sin30°)] = 0.5 m (using 
g=10m/s2)
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Perfectly elastic collisions:  Collisions in which the kinetic energy is 
conserved (as well as the momentum)conserved (as well as the momentum)
• In section 10.6, the book discusses and solves the case of perfectly elastic 

collisions when all the motion (initial & final) is in a straight line.
• However, the more general case is when the objects go off at angles after the 

lli i (thi k b t f l)collision (think about a game of pool).
• Conceptually, the two dimensional problem is the same as 

that in one dimension: momentum is conserved and kinetic 
energy is conserved.  However, the geometry and 
t i t i t d l it i t ll i i ttrigonometry introduce more complexity in actually arriving at 
an analysis.

• Here is an assessment of the relations available an the 
possible known / unknown parameters:

• Δpx = 0 --- pix = pfx

• Δpy = 0 --- piy = pfy

• ΔK = 0 --- Ki = Kf

• Parameters: m1 m2 v1i v1i v2i v2i v1f v1f v2f v2fParameters: m1, m2, v1ix, v1iy, v2ix, v2iy, v1fx, v1fy, v2fx, v2fy

• Thus, have 3 equations and 10 parameters; need to know at 
least 7 to get a solution.

• Common case; know m’s, initial v’s, and one final v; find 
the other final v and the two final directions (θ’s)
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the other final v and the two final directions (θ s).



Perfectly elastic collisions:  Collisions in which the kinetic energy is conserved 
(as well as the momentum)

• Simplest case: that where one object is at rest initially and the other travels toward itSimplest case: that where one object is at rest initially and the other travels toward it 
along +x.

θ θ

θ θ
1 1i 1 1f 1f 2 2f 2fx momentum :  m v  + 0 = m v cos  + m v cos

y momentum : 0 + 0 = m v sin + m v sinθ θ

+
1 1f 1f 2 2f 2f

2 2 21 1 1
1 1i 1 1f 2 2f2 2 2

y momentum :  0 + 0 = m v sin  + m v sin

K :  m v + 0 = m v m v
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Assignment:Assignment:   
Continue reading and working on Chapter 10, 

and begin reading Chapter 11.
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