P2211K 9/2/2010

About vectors and scalars:

- Scalars are mathematical objects having only magnitude (an ordinary number).
- Vectors are mathematical objects having magnitude AND direction. (The magnitude of a vector is a scalar.)
- When used to represent physical quantities, both scalars and vectors must have the appropriate units. (6 m/s, or 6 m/s north, for example.)

Properties of vectors:

- The magnitude of a vector is independent of the coordinate system, but the direction of a vector can be described only with respect to a specified coordinate system. (The starting point of a vector is not important.)
- Vectors may be added and subtracted;
- Vectors may be multiplied and divided by scalars;
- Later on, we will encounter two versions of vector-vector multiplication (the dot product and the cross product);
- Vector-vector division is not defined.

About vectors and scalars:

- Geometrically, vectors are added "tail-to-head." The *resultant* is the vector from the tail of the first to the head of the last.
- The negative of a vector has the same magnitude but the opposite direction;
- Vector subtraction is accomplished by adding the negative of a vector:

$$\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$$

• Vector addition & subtraction are commutative and associative:

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$
 and $\vec{A} + \vec{B} + \vec{C} = \vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C} = (\vec{A} + \vec{C}) + \vec{B}$ etc.

Coordinate systems and vector components:

- Geometric vector addition and subtraction are inconvenient. Use of coordinate systems (or "frames of reference") and the concept of vector "components" are far more convenient.
- The component vector concept is to think of any vector as the resultant of two perpendicular "components." These all form a right triangle with all its geometric and trigonometric convenience.

- On the sketch, A_x and A_y , are the x- and y-components of A & $\vec{A} = \vec{A}_x + \vec{A}_y$.
- This also makes the magnitude of A obvious: by the Pythagorean theorem, $|A|^2 = A_x^2 + A_y^2$.
- Also, it is clear that

$$A_x = |A| \cos \theta$$
, and $A_y = |A| \sin \theta$

Unit vectors:

- It is useful to introduce unit vectors along the coordinate axes for vector algebra. (Unit vectors have magnitude 1 but carry the direction information. The unit vector along x is $\hat{\mathbf{i}}$ and that along y is $\hat{\mathbf{j}}$.)
- With this approach, $\vec{A} = A_x \hat{i} + A_y \hat{j}$

Representing vectors:

- Vectors may be represented either by the component format or by their magnitude and direction: $\vec{A} = A_x \hat{i} + A_y \hat{j}$, or $\vec{A} = |A|$, θ
- Interconversion between the two representations is straightforward via trigonometric approaches: $\mathbf{A} = |\mathbf{A}| \cos \theta = |\mathbf{A}| \left[\left(\mathbf{A}\right)^2 + \left(\mathbf{A}\right)^2\right]^2$

$$\mathbf{A_{x}} = |\mathbf{A}| \cos \theta \qquad |\mathbf{A}| = \sqrt{(\mathbf{A_{x}})^{2} + (\mathbf{A_{y}})^{2}}$$
$$\mathbf{A_{y}} = |\mathbf{A}| \sin \theta \qquad \theta = \arctan\left(\frac{\mathbf{A_{y}}}{\mathbf{A_{x}}}\right)$$

Examples:

 $\vec{A} = 5\hat{i} + 2\hat{j}$, and $\vec{B} = -3\hat{i} - 5\hat{j}$.

Calculate (in the \hat{i} , \hat{j} and the magnitude, θ formats)

a.
$$\vec{C} = \vec{A} + \vec{B}$$
 ($\vec{C} = 2\hat{i} - 3\hat{j}$; or 3.6 @ -56.3° from +x)

b.
$$\vec{D} = 2\vec{A} + 3\vec{B}$$
 ($\vec{D} = \hat{i} - 11\hat{j}$; or 11.04 @ -84.8° from + x)

 $\vec{A} = 8$ units @ 30° to +x, and $\vec{B} = 10$ units @ 120° to +x.

Calculate (in the \hat{i} , \hat{j} and the magnitude, θ formats)

$$(\vec{A} = 6.93\hat{i} + 4\hat{j}; \quad \vec{B} = -5\hat{i} + 8.67\hat{j})$$

a.
$$\vec{C} = \vec{A} + \vec{B}$$
 ($\vec{C} = 1.93\hat{i} + 12.67\hat{j}$; or 12.81 @ 81.3° from + x)

b.
$$\vec{D} = 3\vec{A} - 2\vec{B}$$
 ($\vec{D} = 30.79\hat{i} - 25.34\hat{j}$; or 39.88 @ -39.5° from +x)

- a. Calculate the x- and y components of the initial velocity and initial position vectors;
- b. Calculate the sum of the vectors shown;
- c. Calculate the velocity after 20 s;.
- d. Calculate the position after 20 s.

a.
$$\vec{\mathbf{v}}_0 = (6.93\hat{\mathbf{i}} + 4\hat{\mathbf{j}}) \,\text{m/s}$$

 $\vec{\mathbf{a}} = (0.5 \,\hat{\mathbf{j}}) \,\text{m/s}^2$
 $\vec{\mathbf{r}}_0 = (-2\hat{\mathbf{i}} + 6.93\hat{\mathbf{j}}) \,\text{m}$

c.
$$\vec{\mathbf{v}} = \vec{\mathbf{v}}_0 + \vec{\mathbf{a}}t = [(6.93\hat{\mathbf{i}} + 4\hat{\mathbf{j}}) + (0.5\hat{\mathbf{j}})(20)] \,\text{m/s}$$

-(6.93\hat{\mathbf{i}} + 14\hat{\mathbf{j}}) \text{ m/s}

d.
$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + \vec{\mathbf{v}}_{0}t + \frac{1}{2}\vec{\mathbf{a}}t^2 = [(-2\hat{\mathbf{i}} + 6.93\hat{\mathbf{j}}) + (6.93\hat{\mathbf{i}} + 4\hat{\mathbf{j}})(20) + \frac{1}{2}(0.5\hat{\mathbf{j}})(400)]\mathbf{m}$$

= $(136.6\hat{\mathbf{i}} + 186.93\hat{\mathbf{j}})\mathbf{m}$

b. Can't; not all the same type!!!

