Physics 2211K Principles of Physics I Fall 2010

Dr. Nelson

```
Labs: M 9:00 – 11:50 (CRN 81031)
```

W 9:00 – 11:50 (CRN 81032)

W 1:00 - 3:50 (CRN 81033)

General Course Content

Mechanics, Part 1:

Motion: how do we describe it?

Actions that change motion: force & Newton's "laws"

Mechanics, Part 2:

Another way of looking at force & motion: momentum, energy, and work

Mechanics, Part 3: Applications of Newton's laws

Rigid bodies

Gravity

Oscillations & vibrations

Materials: fluids & elasticity

Mechanics, Part 4:

A broad view of energy: thermodynamics

Mechanics, Part 5:

Waves & wave motion: mechanical aspects

P2211K, 8/24/2010

How we'll do it with this book:

- Describing motion: Kinematics.
 Ch. 1 4
- 2. Newton's laws: Force and momentum. Ch. 5 9
- 3. Work, energy, and motion of rigid bodies. Ch. 10 - 13
- 4. Oscillations, thermodynamics, and wave motion. Ch. 14, 16, 17, 20, 21

About the Course

Direct objectives:

Learn basic principles of physics (mechanics) and how they apply to "real world" problems.

Indirect objectives:

Further develop skills to analyze and approach problems systematically.

Methodologies:

Mathematical description of physical situations; further develop mathematical skills necessary for analysis; apply graphical representation; interpret graphical representations.

Math skills:

Algebra, trigonometry, calculus (derivatives and integrals)

Why should you care?

*

Some Basics from Ch. 1

Vectors: Vectors express *magnitude* and *direction*See section 1.3 (later, in Ch. 3, we'll work with vectors in more detail)

Fundamental quantities:

Mass, length, and *time.*

Units: SI system (English system) see section 1.8

Length: meter (foot)

Time: second

Mass: kilogram (???) --- also, mass vs. weight???

Significant figures: see section 1.8

Particles: For now, we will describe objects as having no dimensions—that is, they are single-point objects...

Position

At its most basic, motion is a *change of position*...so, we need to have a good way to describe position. This introduces *coordinate systems* and *vectors*.

We will introduce these in a two-step manner: 1st we'll use a one-dimensional system (a line), and then will expand it to two dimensions (a plane).

Figure 1.6 (from the text)

Average Speed, Average Velocity

To quantify an object's fastness or slowness, we define a ratio as follows:

average speed =
$$\frac{\text{distance traveled}}{\text{time required}}$$

Average speed does not include information about direction of motion. Average velocity does include direction. The average velocity of an object during a time interval Δt , in which the object undergoes a displacement Δr , is the vector

$$\vec{v}_{\rm avg} = \frac{\Delta \vec{r}}{\Delta t}$$

Linear Acceleration

Because velocity is a vector, it can change in two possible ways.

- 1. The magnitude can change, indicating a change in speed, or
- 2. The direction can change, indicating that the object has changed direction.

$$\vec{a} = \frac{\text{change in velocity}}{\text{time required}} = \frac{\Delta \vec{v}}{\Delta t}$$

Assignment

- Enroll in the class on Mastering Physics
 - o http://www.masteringphysics.com/
- Go through the introduction to Mastering Physics
- Read through Chapters 1 & 2
- Begin working on practice problems
- Begin homework set 1 (in Mastering Physics)

