Physics 2211K Quiz # 12, 11/30/ 2010 | ABLE 1 | 7.2 | Speci | fic he | ats a | nd | molar | | |---------|-----|-------|--------|-------|----|-------|--| | pecific | | | | | | | | | Substance | c(J/kgK) | C(J/molK) | |---------------|----------|-----------| | Solids | | | | Aluminum | 900 | 24.3 | | Copper | 385 | 24.4 | | Iron | 449 | 25.1 | | Gold | 129 | 25.4 | | Lead | 128 | 26.5 | | Ice | 2090 | 37.6 | | Liquids | | | | Ethyl alcohol | 2400 | 110.4 | | Mercury | 140 | 28.1 | | Water | 4190 | 75.4 | | TABLE | 17.3 | Melting/boiling | temperatures | and h | eats of | transformation | |-------|------|-----------------|--------------|-------|---------|----------------| | | | | | | | | | | 0 , | | | | |----------------------------|-----------------------------|--------------------------------------|-----------------------------|------------------------------------| | Substance | $T_{\rm m}(^{\circ}{ m C})$ | $L_{\rm f} \left({ m J/kg} \right)$ | $T_{\rm b}(^{\circ}{ m C})$ | $L_{\rm v}\left({\rm J/kg}\right)$ | | Nitrogen (N ₂) | -210 | 0.26×10^{5} | -196 | 1.99×10^{5} | | Ethyl alcohol | -114 | 1.09×10^{5} | 78 | 8.79×10^{5} | | Mercury | -39 | 0.11×10^{5} | 357 | 2.96×10^{5} | | Water | 0 | 3.33×10^{5} | 100 | 22.6×10^{5} | | Lead | 328 | 0.25×10^{5} | 1750 | 8.58×10^{5} | | | | | | | Copyright © 2008 Peansin Education, Inc., publishing as Peanson Addacn Wesley. <u>Version 1</u>: How much water at 80° C is needed to melt 100 g ice at -20° C and bring the total liquid to a final temperature of 35° C? ## Principle: $$0 = \Delta Q = \Delta Q_{warming ice to 0} + \Delta Q_{melting ice} + \Delta Q_{warming water from 0} + \Delta Q_{cooling water from 80}$$ $$0 = (0.1kg)(2090)[0 - (-20)] + (0.1kg)(3.33 \times 10^{5}) + (0.1kg)(4190)(35 - 0) + m(4190)(35 - 80)$$ $$m = 0.277 \ kg = 277 \ g$$ <u>Version 2:</u> 200 g copper at 90° C is dropped into a mixture of 5 g ice and 45 g water at 0° C. What is their final temperature at thermal equilibrium? ## Principle: $$0 = \Delta Q = \Delta Q_{melting 5g ice} + \Delta Q_{warming 50 g water from 0} + \Delta Q_{cooling copper from 90}$$ $$0 = (5 g)(3.33 \times 10^{5}) + (50 g)(4190)(T_{f} - 0^{\circ}C) + (200 g)(385)(T_{f} - 90^{\circ}C)$$ $$\boxed{T_{f} = 18.4^{\circ}C}$$ <u>Version 3:</u> How much total ice at -15° C is needed to cool 80g ethyl alcohol from 40° C to 0° C with 5 g ice remaining in the liquid? ## Principle: $$0 = \Delta Q = \Delta Q_{warming ice to 0} + \Delta Q_{melting ice} + \Delta Q_{cooling ethanol from 40}$$ $$0 = (m)(2090)[0 - (-15)] + (m - 5 g)(3.33 \times 10^{5}) + (80 g)(2400)(0 - 40)$$ $$[m = 25.6 g]$$