Physics 2211K

Quiz # 8 (Take home)

October 26, 2010

Name:

In the system below, A = 4.0 kg, B = 10.0 kg, $\theta = 30^{\circ}$, and h = 1.5 m.

h

- a. How far does **block A** move **along the incline** when **block B falls by h**? (**Express your result in algebraic form.**)
- b. How high (*vertically*) does *block A* rise when *block B falls by h*? (*Express your result in algebraic form.*)
- c. Use work and energy to find the **speed of B** when it has fallen the **distance h** if it **begins from rest** and the **coefficient of kinetic friction for A is** $\mu_k = 0.2$. (**Ignore static friction**.)

- **a.** Because blocks A and B are tied together, as B falls the distance h_B , A moves the same distance along the incline. Thus $d_A = h_B$.
- **b.** As B falls the vertical distance h_B , A rises by the amount $h_A = d_A \sin\theta$. Thus $h_A = h_B \sin\theta$.

c. Principle:
$$\Delta K = W_T$$

$$\Delta K = \Delta K_A + \Delta K_B = \frac{1}{2} M_A v^2 + \frac{1}{2} M_B v^2 = \frac{1}{2} (M_A + M_B) v^2$$

$$W_T = W_{g,B} + W_{g,A} + W_{f,A}$$

$$W_{g,B} = M_B g h_B = M_B g h$$

$$W_{g,A} = -M_A g h_A = -M_A g (h s i n \theta) \text{ (Force \& d are opposite \Rightarrow - sign)}$$

$$W_{f,A} = -\mu_k n_A d_A = -\mu_k (M_A g c o s \theta) h \text{ (Force \& d are opposite \Rightarrow - sign)}$$

$$\frac{1}{2} (M_A + M_B) v^2 = M_B g h - M_A g (h s i n \theta) - \mu_k (M_A g c o s \theta) h$$

$$v^2 = \frac{M_B g h - M_A g (h s i n \theta) - \mu_k (M_A g c o s \theta) h}{\frac{1}{2} (M_A + M_B)}$$

$$v^2 = \frac{2g h \left[M_B - M_A (s i n \theta + \mu_k c o s \theta) \right]}{(M_A + M_B)}$$

$$v = \sqrt{\frac{2g h \left[M_B - M_A (s i n \theta + \mu_k c o s \theta) \right]}{(M_A + M_B)}} = 3.96 \text{ m/s}$$