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Abstract. A prescription is provided for constructing the
Hall curve including both integral (I)- and fractional (F)-
quantum Hall effects (QHE) that is based upon the iter-
ative application of particular transformations simulta-
neously to the Hall resistance (R

9:
) and magnetic field (B)

axes of a template constructed from the elementary (inte-
gral quantum) Hall curve to filling factor l"1. The con-
struction shows that scaled copies of the elementary Hall
curve reappear in various parts of the constructed curve
upon increasing the magnification, resulting in FQHE
sequences in higher Landau bands, and novel FQHE
sequences between main sequence FQHE’s in the lowest
Landau band. The self similarity observed in the construc-
ted Hall curve helps to draw a connection between
FQHE’s and the classical problem of an electron-
in-a-periodic-potential-subjected-to-a-magnetic-field
(‘Hofstadter’s butterfly’), and suggests that fractional
quantum Hall effects constitute another manifestation of
fractal geometry in nature—one that might also be viewed
as a signature of transport in a Wigner crystal.

PACS: 73.40.Hm

Fractals are objects that appeal to the intuition by exhibi-
ting self-similarity upon the transformation of the charac-
teristic scales (scaling) associated with the object. A study
of some simple fractals shows that this feature may be
traced to the construction of the fractal by the repeated
application of well specified operations upon an elemen-
tary unit or ‘fractal generator’. The important role for the
construction- and the pictorial representation- in the
study of fractals has also been reinforced by the collection
of fractals studied by Mandelbrot [1]. These points sug-
gest that establishing fractal characteristics in physical
phenomena involves both the identification of the elemen-
tary units, and the prescription for constructing the object,
so that the origin of the self-similar fine structure that
appears upon ‘increasing the magnification’ might be
understood by appealing to the intuition [1].

The Hall effect is an old effect which has enjoyed
a remarkable resurgence following the discovery of Hall
resistance quantization, in a two dimensional electron
system, at high magnetic fields (B) and low temperatures
(T) [2—26]. The theoretical study of quantum Hall effects
at integral- and (predominantly) odd denominator frac-
tional- filling factors (l) has recently led to the examina-
tion of the half filled Landau band in the two-dimensional
electron system (2DES), and suggestions of its equivalence
to the zero magnetic field (B"0) situation, according to
Halperin [14, 15]. This appealing analogy has served as
a catalyst for several recent experiments that have been
carried out in order to confirm the Fermi surface at
l"1/2, and the novel quasiparticles that constitute the
Fermi sea [16—26]. These developments have suggested
a linkage between fractional quantum Hall effects occur-
ing in the vicinity of filling factors l"p/(2mp$1) within
the lowest Landau band, with m, p,"positive integers,
with integral quantum Hall effects at l"p and, in a sense,
linked together the integral- and the fractional- aspects of
the problem [16]. Although these theories have advanced
the state of the field, they could be extended further in
order to account for the occurrence of fractional quantum
Hall effects at filling factors l'1 [25]. In addition, the
physical origin of certain peculiar FQHE sequences could
be better elucidated, and there is a need to clarify whether
these novel quasiparticles at l"1/2 maintain their char-
acter to, for example, l"1/3.

We have also been motivated by evidence of self sim-
ilarity in the Hall curve and the possibility that this might
be more pervasive than what has been revealed thus far by
experiment. Thus, this study represents an attempt to
extract a repeating pattern, and construct the Hall curve
from an ‘elementary unit,’ in order to identify possible
fractal characteristics in quantum Hall effects [1]. Success
in this direction might make possible the identification of
novel (hidden) FQHE sequences within the main sequence
FQHE’s in the presently available samples, and perhaps,
improve the intuitive understanding of quantum Hall
effects.

The Hall curve that is constructed here shows a con-
nection between the occurence of FQHE’s at filling factors



Fig. 1. The diagonal resistance, R
99
, and the Hall resistance, R

9:
,

measured in a GaAs/AlGaAs heterostructure device are plotted vs.
the magnetic field, B

l'1 and l(1 by demonstrating, for example, that
a l"(3p$1)/(4p$1) sequence about l"3/4, and
a l"(3p$1)/(8p$3) sequence about l"3/8, are reflec-
tions of quantum Hall effects about l"3/2 in the first
Landau band. The construction suggests the existence of
a large number of half-filled-Landau-band like neighbor-
hoods (some of which lie in the range 1/2'l'1/3) at, for
example, l"(4j#1)/4, (4j#1)/(8j!2), (4j#1)/(8j#6),
etc., with j"1, 2, 32. It also indicates that the QHE
structure in the range (5/65l53/4 or 3/45l51/2) or
(1/25l53/8 or 3/85l55/14) is similar to the series
which spans a magnetic field range *B"2B

0
with

04B42B
0

or 2B
0
4B44B

0
, where B(l"1)"B

0
. Fi-

nally, apparant similar fractal aspects between FQHE’s
and the classical problem of an-electron-in-a-periodic-po-
tential-subjected-to-a-magnetic-field indicates the possi-
bility of applying a (single particle) density-of-states type
description to the FQHE regime, with fine structure (gaps)
within the Landau bands, as in the Hofstadter butterfly
spectrum [27—33]. This suggests the understanding that
electron transport in a Wigner (poly) crystal tends to
result in FQHE’s.

The investigation was motivated by experiments car-
ried out on Hall bar type specimens based on
GaAs/AlGaAs heterostructures prepared by molecular
beam epitaxy [2, 3]. The measurements exhibited FQHE
features that have been widely reported in the literature,
[13, 24] as is evident in the longitudinal, R

99
, and Hall

resistance, R
9:

, data shown in Fig. 1. The plot shows that
between 1/25l51/3 the most pronounced resistance
minima coincides with a plateau at R

9:
"3R

K
, which

characterizes a ‘1/3’ fractional quantum Hall effect; [5]
there is also a second deep R

99
minimum which corres-

ponds to a ‘2/5’ FHQE. Previous studies have suggested
the so-called main sequence series, occuring in the vicinity
of l"p/(2p#1) with p"1, 2, 2 , which correspond to
R

9:
"2R

K
#R

K
/p or, equivalently, integral quantum

Hall effects shifted by 2R
K
. The main sequence FQHE’s in

the range 15l51/2, of which the ‘1’, ‘2/3’ and the ‘3/5’
are observable in these data, occur at l"p/(2p!1) and
correspond to R

9:
"2R

K
!R

K
/p. The similarities be-

tween the neighborhoods l"1/2 and l"O (B" 0)

Fig. 2. a The Hall resistance R
9:

vs. the normalized magnetic field
B/B

0
upto filling factor l"1 (marked by bold vertical line). b To the

Hall curve of a, one may attach a suitable copy of curve a, in order to
obtain curve b. The copy is obtained by first reflecting the generator
about R

9:
"1R

K
, followed by another reflection about B/B

0
"1.

c to the curve b, one may attach a copy of curve a after translating it
along the B- and R

9:
-axes by two units, respectively. The resultant

curve exhibits IQHE’s and main sequence FQHE’s. Curve c, which
spans 04R

9:
43R

K
, will be utilized as the template for the follow-

ing figures. Here, curves a, b, and c have been offset along the
abscissa for the sake of clarity

have been formalized by suggesting the existence of
a Fermi sea of novel quasiparticles near l"1/2, [14—16]
such that a deviation about l"1/2 is equivalent to devi-
ation about B" 0. Thus, a feature of this picture is that
a magnetic field B"2/

0
n may be subtracted away in the

vicinity of l"1/2, where /
0

is the flux quantum, resulting
in an effect that is linearly proportional, with the same
coefficient of proportionality in the ‘#’ and ‘!’ B direc-
tions, to the remaining magnetic field [14—16].

The basic Hall curve to l"1/3 might be constructed
(see Fig. 2) from an experimental trace (‘fractal generator’)
showing IQHE upto l"1. The construction proceeds by
attaching a suitable copy of the elementary unit (curve of
Fig. 2a) to the Hall curve of Fig. 2a, in order to obtain the
curve shown in Fig. 2b. The copy might be obtained by
first reflecting the generator about B/B

0
"1, followed by

a reflection about R
9:
"1R

K
(see Fig. 2). The electron-like

main sequence to l"1/3 might be realized by attaching
the curve of Fig. 2a to the end of the Hall curve of Fig. 2b,
after moving the curve of Fig. 2a along the abscissa and
ordinate by two units, respectively. Thus, one obtains
Fig. 2c which exhibits the main sequence FQHE’s to
l"1/3. In a similar spirit, the Hall curve may be con-
tinued to higher Hall resistances and B/B

0
by repeatedly

concatenating sections. Here, however, the curve of Fig. 2c
will be utilized as a template for further constructions
shown in the following figures, in order to maintain suffi-
cient resolution in the plots.

A review of the experimental situation shows
that FQHE’s occur also at l'1, for example, about
l"3/2 (see Fig. 1) [25]. Indeed, the simple relation
l"j# 1

(21$1)
observed between FQHE’s in the first

Landau band ( j"1) and that in the lowest band (j" 0)
suggests the possibility that FQHE’s in higher bands can
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Fig. 3. a The axes of the template (Fig. 2c) have been rescaled by
B@/B

0
"[2/3$1/(3(3 B

0
/B$1))] and R

9:
@/R

K
"[2/3$1/

(3(3R
K
/R

9:
$1))], respectively. Here, the ‘#’ branch spans the

range 3/25l56/5. b The axes of Fig. 2c have been rescaled by the
transformations B@/B

0
"[2/5$1/(5(5 B

0
/B$2))] and R

9:
@/R

K
"

[2/5$1/(5(5 R
K
/R

9:
$2))], respectively. This produces additional

FQHE’s in the range 35l'2 which are also shown in inset (i).
c The axes of Fig. 2c, have been rescaled by the transforma-
tions B@/B

0
"[2/7$1/(7(7 B

0
/B$3))] and R

9:
@/R

K
"[2/7$1/

(7(7R
K
/R

9:
$3))], respectively. The expanded scale of inset (ii) high-

lights the range 45l'3. Curves a, b, and c have been offset along
the abscissa

be constructed from the result for the lowest band (to
l"1/3) by applying a suitable set of transformations to
the template (Fig. 2c). We demonstrate this point for
25l'1 by simultaneously rescaling the axes of the
template (Fig. 2c) by the (continuous) transformation
x@"[2/3$1/(3(3 x~1$1))], where x"B/B

0
and

R
9:
/R

K
, respectively, with the results shown in Fig. 3a.

Here, the electron-like ‘#’ branch spans the range
3/25l56/5 and the ‘1/3’ FQHE of Fig. 2c is mapped
onto the ‘6/5’ FQHE in curve Fig. 3a. In the ‘!’ branch,
the ‘1’ IQHE of the template is transformed into the ‘2’
IQHE in this curve, and the l"1/2 neighborhood of
Fig. 2c is transformed into l"O (B@/B

0
"0) in Fig. 3a.

A noteworthy point here is that these non-linear trans-
formations produce an electron-like ‘#’ branch which
spans a smaller range of magnetic fields (and Hall resist-
ances) than the hole-like ‘!’ branch, unlike the case of
the lowest band, discussed previously.

In a similar spirit, the axes of Fig. 2c may be rescaled
simultaneously by the transformation x@"[2/5$
1/(5(5 x~1$2))], in order to obtain scaled copies exhibi-
ting FQHE’s in the second Landau band. The results are
shown in Fig. 3b, and Fig. 3, inset (i). If one rescales the
axes of Fig. 2c, by the transformation x@"[2/7$
1/(7(7 x~1$3))] where x"B/B

0
and R

9:
/R

K
, respective-

ly, one obtains FQHE’s in the third Landau band (Fig. 3c
and inset (ii)). The fractal aspect here is that if one in-
creases the magnification and examines the Hall curve
between two consecutive IQHE’s one sees once again an
elementary (integral quantum) Hall curve.

The next step in the construction involves enforcing
the mirror (anti) symmetry in the Hall curve that was
shown in Fig. 2b, upon the constructed Hall curves of
Fig. 3. Suitable compound transformations which include
both the ‘map to higher Landau band’ (as in Fig. 3) and
the ‘mirror (anti) symmetry’ about l"1 features (Fig. 2b)
are demonstrated in Fig. 4. In Fig. 4a, the axes of the
template (Fig. 2c) have been rescaled simultaneously by
the transformation x@"[4/3G1/(3(3 x~1$1))], where
x"B/B

0
and R

9:
/R

K
, respectively. Then, the ‘#’ branch

is the one that spans the range 6/75l53/4. In the ‘!’
branch, the ‘1’ IQHE of the template is transformed into
the ‘2/3’ FQHE in this curve, and the l"1/2 neighbor-
hood (Fig. 2c) is transformed into l"1/2 (Fig. 4a). Ana-
logously, the abscissa and ordinate of Fig. 2c may be
rescaled simultaneously by the transformations x@"
[8/5G1/(5(5 x~1$2))], where x"B/B

0
and R

9:
/R

K
, re-

spectively, in order to generate new FQHE’s in the region
2/3'l53/5 (see Fig. 4b and inset (i)). Finally, the axes of
Fig. 2c, may be rescaled simultaneously by the trans-
formation x@"[12/7G1/(7(7 x~1$3))], in order to pro-
duce additional FQHE’s in the region 3/5'l54/7.
These are also shown in expanded scale in Fig. 4, inset (ii).
Interestingly, these transformations suggest the possibility
of additional FQHE sequences between the main se-
quence ‘hole-like’ FQHE’s, for example, between the ‘2/3’
and the ‘3/5’ FQHE’s (see Fig. 4b), in addition to
new l"1/2 like neighborhoods between 1'l'1/2,
e.g., at l"(4j#1)/(8j!2)"5/6, 9/14, 13/22, etc., for
j"1, 2, 3, etc.
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Fig. 4. a The axes of the template (Fig. 2c) have been rescaled by the
transformations B@/B

0
"[4/3G1/(3(3 B

0
/B$1))] and R

9:
@/R

K
"

[4/3G1/(3(3 R
K
/R

9:
$1))], respectively. Here, the ‘#’ branch

spans the range 6/75l53/4, and the l"1/2 neighborhood (of
Fig. 2c) is transformed into the l"5/6 neighborhood. In the ‘!’
branch, the ‘1’ IQHE of the template (Fig. 2c) is transformed onto
the ‘2/3’ FQHE in this curve, and the l"1/2 neighborhood is
mapped into the l"1/2 neighborhood. b The abscissa and ordinate

of Fig. 2c have been rescaled by the transformations
B@/B

0
"[8/5G1/(5(5 B

0
/B$2))] and R

9:
@/R

K
"[8/5G1/(5(5 R

K
/

R
9:
$2))], respectively. This produces additional FQHE’s in the

region 2/3'l53/5, see also inset (i). c The axes of Fig. 1c, have
been rescaled by B@/B

0
"[12/7G1/(7(7 B

0
/B$3))] and

R
9:

@/R
K
"[12/7G1/(7(7 R

K
/R

9:
$3))], respectively. For the sake of

clarity, curves a, b, and c have been offset along the abscissa

The consequence of FQHE’s in higher Landau bands
(Fig. 3) for the Hall structure between 1/25l'1/3 may
be deduced by translating the Hall curves of Fig. 3 by two
units along the abscissa and the ordinate, respectively, in
analogy to the procedure used for constructing the Hall
curve of Fig. 2c from Fig. 2a and Fig. 2b. This is equi-
valent to, for example, rescaling the axes of the
template (Fig. 2c) by the transformation x@"
[8/3$1/(3(3 x~1$1))], where x"B/B

0
and R

9:
/R

K
, re-

spectively (see Fig. 5a). Then, the ‘#’ branch spans the
range 3/85l56/17, and the l"1/2 neighborhood of
Fig. 2c is transformed into the l"5/14 neighborhood in
the ‘#’ branch of Fig. 5a. About l"3/8, we expect
a ‘copy’ of IQHE’s occuring in order of decreasing
strength in the vicinity of filling factors l"(3p$1)
/(8p$3) . In Fig. 5 (b and inset (i)), the axes of Fig. 2c have
been rescaled by the transformations x@"[12/5$
1/(5(5 x~1$2))], where x"B/B

0
and R

9:
/R

K
, respective-

ly. This produces additional FQHE’s in the region
3/75l'2/5. Finally, the axes of Fig. 2c, have also been
rescaled by the transformations x@"[16/7$
1/(7(7 x~1$3))], see Fig. 5c. This produces additional
FQHE’s in the region 4/95l'3/7, which are shown in
expanded scale in inset (ii).

The complete Hall curve spanning the range
O5l51/3 might be obtained by putting together the
relevant sections from Figs. 2, 3, 4, and 5. The result is
shown in Fig. 6b. This next (second) generation template
(Fig. 6b), which ought to be compared with Fig. 6a, ex-

hibits additional FQHE fine structure, including novel
FQHE sequences in the lowest band and FQHE in higher
Landau bands.

At this stage, it is clear that an iteration has been
completed and that this second generation template
(Fig. 6b) might now be subjected to a new round of trans-
formations as above in order to obtain a third generation
template. Then, the third generation template may be
similarly operated upon in order to obtain a fourth gen-
eration template, and so on [1].

A continued (iterative) application of this prescription
seems to produce ever finer Hall structure and, simulta-
neously, provides some new insight into origin of the
relative strength- and heirarchy- of FQHE sequences:
First, it is clear that the form of the transformation them-
selves influence the relative strength of the plateaus. This
may be understood by comparing Fig. 3a and Fig. 3b and
noting that FQHE plateaus lying between 35l'2 are
narrower than those lying between 25l'1 although
they both result from the application of a single trans-
formation upon the same template (Fig. 2c). Second, com-
pounding transformations further narrows a given Hall
plateau while giving rise to new QHE’s. (This is somewhat
analogous to the typical experimental observation that
integral Hall plateaus ‘become narrower’ as fractional
Hall plateaus become observable with improving sample
quality). Further, the larger the number of iterative loops
that is necessary in order to realize a particular sequence,
the weaker the resultant sequence. Finally, the figures
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Fig. 5. a The axes of the template (Fig. 2c) have been rescaled by the
transformations B@/B

0
"[8/3$1/(3(3 B

0
/B$1))] and R

9:
@/R

K
"

[8/3$1/(3(3R
K
/R

9:
$1))], respectively. Here, the ‘#’ branch spans

the range 3/85l56/17, and the ‘1/3’ FQHE from Fig. 2c is map-
ped onto the ‘6/17’ FQHE in curve a. In addition, the l"1/2
neighborhood is mapped onto the l"5/14 neighborhood. In the
‘!’ branch, the ‘1’ IQHE of the template is transformed into
the ‘2/5’ FQHE in this curve. b The axes of Fig. 2c have been rescaled
by the transformations B@/B

0
"[12/5$1/(5(5 B

0
/B$2))] and

R
9:

@/R
K
"[12/5$1/(5(5 R

K
/R

9:
$2))], respectively. This produces

additional FQHE’s in the region 3/75l'2/5, which is shown in
expanded scale in inset (i). c The axes of Fig. 2c, have been rescaled
by the transformations B@/B

0
"[16/7$1/(7(7 B

0
/B$3))] and

R
9:

@/R
K
"[16/7$1/(7(7 R

K
/R

9:
$3))], respectively. This produces

additional FQHE’s in the region 4/95l'3/7, which is shown in
expanded scale in inset (ii). Note that curves a, b, and c have been
offset along the abscissa

Fig. 6 a A copy of the ‘template’ Hall curve shown in Fig. 2c. b The
next (second) generation ‘template’ Hall curve obtained by splicing
together the relevant regions from the Hall curves shown in Figs. 2,
3, 4, and 5. This curve b, which has been offset along the abscissa,

exhibits FQHE in higher Landau bands and novel FQHE’s in the
lowest band. One might imagine subjecting this second generation
curve to a new round of transformations (see text) in order to obtain
a third generation template
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show that some QHE’s appear repeatedly in several differ-
ent transformed curves. This indicates that the greater the
number of transformations that help realize a given QHE,
the stronger the resultant QHE. There is some evidence
that these QHE’s, which may be obtained in many differ-
ent ways, are also most readily observed in experiment.

The existence of a prescription for constructing the full
Hall curve from an elementary unit, and the fact that fine
structure in the Hall curve may be related to a suitably
scaled version of the elementary unit, clearly demonstrate
the existence of fractal characteristics in QHE’s [1].
Further, if one cites the occurence of IQHE’s as a manifes-
tation of mobility gaps in the single particle spectrum,
then one might reason that fine structure in the Hall curve
signifies also the existence of gaps due to a fractal elec-
tronic structure within the Landau band, analogous to
that in the Hofstadter butterfly spectrum [27—34]. The
literature connected with this periodic potential problem
[27—34] typically examines the electronic structure of
a two-dimensional square lattice immersed in a uniform
transverse magnetic field, and the influential parameter in
the analysis is a, the ratio of the flux through a lattice cell
to /

0
, which is taken to satisfy the condition of rationality,

a"m/q. When a"m/q, the Bloch band breaks up into
q distinct energy bands. Equivalently, the Landau band is
broken into m bands by the periodic potential [31]. One
might link this model (periodic) system with the system
under consideration, a homogeneous 2DES, by suggesting
that the average interelectronic spacing itself sets an effec-
tive length scale for a periodic potential in the 2DES
(because each electron sees a small periodic variation in
the background potential due to the existence of other
electrons), and this periodicity is responsible for a fractal
electronic (fine) structure within the Landau band. Thus,
for example, at a"3/1, when there occurs three flux
quanta per unit cell (of the electron lattice), the Landau
band might be split into three subbands by the periodic
potential (see Fig. 7a). As three flux quanta per electron
corresponds to a one-third filled Landau band, the
Fermi level would be pinned within the lowest mobility
gap (see Fig. 7a) and Hall quantization appears plausible
at R

9:
"3R

K
. If a"3/2, the lowest Landau band

might be split, once again, into three subbands. How-
ever, in this case, the Fermi level would lie in the gap
between the second and the third subbands because
l"2/3. Then, Hall quantization appears plausible at
R

9:
"3/2R

K
.

In Fig. 7b, we examine some ‘numerology’ for odd
numerator rational fractions a"m/q with m upto
m" 13. That is, we wish to determine whether all such
FQHE’s at R

9:
"(m/q) R

K
predicted by this simple pic-

ture occur in the Hall curve construction discussed here.
In order to keep track of FQHE’s that occur, observed
fractional values of a have been linked into sequences in
Fig. 7b. Indeed, a close study of the constructed Hall
curves shows that all FQHE’s corresponding to
R

9:
"(m/q) R

K
with 14m411 and 14q411 do oc-

cur in such a construction, which suggests the conjecture
that the entire set of rational numbers a"m/q, with
m assuming odd-integral values and q assuming integral
values can, in principle, be manifested in a such a con-
structed Hall curve exhibiting FQHE’s (at l"q/m).

Fig. 7a. A sketch exhibiting the splitting of a Landau band into
three subbands when the flux per electron a"(m/q)"(3/q) with
q"1, 2, and 3. Here, q"1 corresponds to three flux per electron or
l"1/3, which may be identified with the filling of the lowest sub-
band (shaded region). Similarly, q"2 corresponds to two filled
subbands or l"2/3, and q"3 corresponds to three filled subbands
or l"1. b The set of rational fractions m/q, with odd-integral m,
14m413, and 14q413. Fractional quantum Hall effects in the
lowest band, with Hall resistances R

9:
"(m/q) R

K
, that occur in this

construction have been joined together into sequences. Simple frac-
tions have been highlighted by rectangular frames. Fractions that do
not fall into a simple sequence (with this restricted set of rational
fractional numbers), and yet occur in such a construction, are framed
by ovals. One observes that all odd numerator rational fractions
m/q with 14m411 and 14q411 are represented in such a con-
struction. This suggests the conjecture that every odd-numerator
rational fraction (m/q) could, in principle, be represented by
a FQHE in a Hall curve constructed using the method outlined in
the text

The Hofstader type picture of a Landau band being
split into an odd-integral number of subbands by a com-
mensurate magnetic field suggests a dynamical structure
for the gaps in the density of states as a function of l. Yet,
the point that one always obtains a gap at the Fermi level
at odd denominator (rational) fractional l (l"q/m) sug-
gests the possibility of utilizing a static picture, one that
includes a number of mobility gaps occuring at various
energies within the Landau band, a picture that is more
easily grasped by the intuition. Such a static picture
including mobility gaps within the Landau band is shown
in Fig. 8. Figure 8a shows the usual picture for IQHE
including mobility gaps at E"p+u. This picture is ex-
tended to the l(1 fractional filling factor QHE regime in
Fig. 8b. Here, one sees mobility gaps occuring within the
lowest Landau band at E"+u/[2$(1/p)], which corres-
pond to the main sequence FQHE’s. Similarly, fractal
electronic structure in the range 2'l'1 might also be
represented by gaps over the corresponding range, as in
Fig. 8c.
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Fig. 8. A sketch of the ‘extended’ density of states vs. energy. a The
usual situation which gives IQHE when the Fermi level lies the
mobility gaps in the vicinity of E"p +u. b Suggested fractal struc-
ture in the electronic spectrum (see text) indicates additional mobil-
ity gaps within the Landau band. Here, in this ‘static picture,’ gaps
are indicated at filling factors corresponding to main sequence
FQHE’s in the lowest Landau band. c A similar picture for FQHE’s
in the filling factor range 1(l(2

Thus, the overview that emerges from this study is as
follows: FQHE’s are a transport response which become
observable when an electron becomes sensitive to the
periodic arrangement of other electrons. The reasoning
here is that a lattice-like electron arrangement induces
a fractal electronic structure with gaps within the Landau
band, and it is the pinning of the Fermi level within these
gaps that induces FQHE’s. A consequence of such reason-
ing is that a correlated electron arrangement occurs not
only under FQHE conditions but also in the range of
l between consecutive FQHE’s (it is just that the transport
response does not reflect this periodicity in a very obvious
way under such conditions). Indeed, observability of
FQHE at the highest l, seems tantamount to confirming
this (local) Wigner crystallization for lower l.

In summary, an iterative prescription has been speci-
fied here for constructing the Hall curve — one that gener-
ates FQHE’s in higher Landau bands and also identifies
new sequences between ‘main sequence’ FQHE’s. The
analogies between this Hall curve construction and the
construction of fractals [1] was pointed out throughout
the procedure, and the self-similarity between the various
sections of the overall Hall curve and the template
(Fig. 2c) was identified with nonlinear transformations
to be applied simultaneously to the R

9:
and B axis.

The development of the fractal Hall curve suggested the
existence of a number of half-filled-Landau-band-like-
neighborhoods (at, for example, l"(4j#1)/(8j#6))

which interfere between the l"1/2 neighborhood
and l"1/3 FQHE’s; this seems to complicate the ques-
tion whether novel quasiparticles at l"1/2 can maintain
their character to l"1/3. Finally, it has been reasoned
that FQHE’s constitute a fractal originating from a Hof-
stader type spectrum, that is induced by (local) Wigner
crystallization.

The MBE material used for these experiments was expertly prepared
in the laboratories of M. Shayegan and kindly provided to us by V.J.
Goldman. Some discussions with D. Pfannkuche and N. Bonesteel
are also acknowledged. A portion of this work was performed at the
National High Magnetic Field Laboratory, which is supported by
NSF Cooperative Agreement No. DMR-9016241 and the State of
Florida (U.S.A).
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