Solutions for Homework \# 8
Problem 1: (20 points)
A line charge density $\sigma(\vartheta)=\mathrm{K} \cdot \cos (\vartheta)$ is glued over the surface of a spherical shell of radius R , where K is a constant. Find the resulting potential inside and outside the sphere.

$$
\text { for outside: } \quad V(\omega, \theta)=\sum_{l} B_{R}+^{-(l+1)} P_{e}(\cos \theta) \quad+\geqslant R
$$

1.) Potential at surface is continuous $r=R$

$$
\begin{aligned}
& \sum_{l} P_{l} \cdot R^{l} P_{l}(\cos \theta)=\sum_{l} S_{l} \cdot R^{-(l+1)} P_{l}(\cos \theta) \quad / \cdot \int_{0}^{T} P_{l}(\cos \theta) d \theta \\
& \sum_{l} P_{l} R^{l} \int_{0}^{\pi} P_{l}(\cos \theta) \cdot P_{l}(\cos \theta) d \theta=\sum_{l} B_{l} \cdot R^{-(l+1)} \cdot \underbrace{\int_{0}^{T} P_{l}(\cos \theta) \cdot P_{l}(\cos \theta) d \theta}_{\delta\left(l \cdot e^{\prime}\right): \rightarrow l=l^{\prime}} \\
& \leadsto A_{l} R^{2} \cdot \frac{2}{2 l+1}=\frac{R}{R} R^{-(l+1)} \cdot \frac{2}{2 l+1} \\
& \leadsto B_{l}=A_{l} R^{2 l+1} \\
& \text { 2.) } \frac{\partial V_{\text {out }}}{\partial+}-\left.\frac{\partial V_{\text {inside }}}{\partial r}\right|_{r=R}=4 \pi \sigma \\
& \rightarrow\left[\sum_{l} R_{l}(-l-1) r^{-(l+2)} P_{l}(\cos \theta)-\sum_{l} A_{l} \cdot l \cdot r^{l+1} \mathcal{P}_{l}(\cos \theta)\right]_{\gamma=R}=-4 \pi \sigma \\
& \text { and } B_{e}=A_{e} Q^{2 e+1}
\end{aligned}
$$

$$
\begin{aligned}
& \leadsto \sum_{l}(2 l+1) A_{l} R^{l-1} P_{l}(\cos \theta)=4 \pi \sigma \quad \int \cdot \int_{0}^{5} P_{l}(\cos \theta) d \theta \\
& \sum_{l}(2 l+\lambda) R_{l} R^{l+1} \int P_{l^{\prime}}(\cos \theta) P_{l}(\cos \theta) d \theta=4 \pi \int_{0}^{T} k \cdot \underbrace{\cos (\theta)}_{=P_{-}} P_{l^{\prime}}(\cos \theta) d \theta \\
& \left(2 \ell^{\prime}+1\right) A_{R^{\prime}} R^{e^{\prime-1}} \frac{2}{2 \ell^{\prime}+1}=4 \pi k \int_{0}^{\pi} \frac{P_{1} \cdot P_{e^{\prime}} \cdot d \theta}{\delta_{1 \ell^{\prime}}} \\
& F_{e^{\prime}} R^{R^{\prime}-1}=2 \pi K \cdot \frac{2}{2 R^{\prime}+i} \cdot \delta_{1 R^{\prime}} \\
& \leadsto A_{l}=\frac{4 \pi k}{2 \ell+1} \cdot \frac{1}{R^{k-1}} \cdot \delta_{1 \ell}
\end{aligned}
$$

For inside:

$$
\begin{aligned}
V_{(1, \theta)} & =\sum_{l} \frac{4 \pi k}{2 l+1} \cdot \frac{1}{R^{2-1}}, \delta_{1 l} \cdot r^{e} P_{l}(\cos \theta) \quad \left\lvert\, \begin{array}{c}
\text { only } l \cdot 1 \text { provide } \\
\text { solution! }
\end{array}\right. \\
& =\frac{4 \pi k}{3} \cdot \frac{r}{R^{0}} P_{1}(\cos \theta) \\
& =\frac{4 \pi k \cdot r}{3} \cdot \cos \theta
\end{aligned}
$$

For outside : $\quad B_{l}=B_{l} \cdot R^{2 R+1}=\frac{4 \pi k}{2 l+1} \cdot \frac{R^{2 l+1}}{R^{\ell-1}} \delta_{1 l}=\frac{4 \pi k}{2 R+1} R^{k 2 \delta_{1 l}}$

$$
\begin{aligned}
L_{(n, \theta)} & =\sum_{l} R_{e} r^{-(l+1)} P_{l}(\cos \theta) \\
& =\sum \frac{4 \pi k}{2 R+1} R^{e \theta+}{ }^{-(l+1)} \int_{1 e} P_{l}(\cos \theta) \\
& =\frac{4 \pi}{3} k \cdot \frac{R^{3}}{r^{2}} \cdot \cos \theta
\end{aligned}
$$

Problem \#2: (20 points) A line charge density is distributed on the z -axis from $\mathrm{z}=-\mathrm{a}$ to $\mathrm{z}=\mathrm{a}$. Using the method of Green's function, find the potential for $r>$ a to the order of $(a / r)^{5}$.

line charge

$$
\begin{aligned}
\rho(\vec{\pi})=\lambda \cdot \frac{1}{2 \pi \sigma^{\prime 2}} \cdot[& \delta\left(\cos \theta^{\prime}-\cos \phi\right) \\
& \left.+\delta\left(\cos \theta^{\prime}-\cos \pi\right)\right]
\end{aligned}
$$

$$
\begin{array}{r}
Q=\int_{V} \rho\left(r^{\prime}\right) d^{3} r^{\prime}=\lambda \int_{V} \frac{1}{2 \pi r^{\prime 2}} \cdot\left[\delta\left(\cos \theta^{\prime}-1\right)+\delta\left(\cos \theta^{\prime}-\cos \pi\right)\right) \\
-r^{\prime 2} d r^{\prime} \sin \theta^{\prime} d \theta^{\prime} d \varphi
\end{array}
$$

$$
=\frac{\lambda}{2 \pi} \int_{0}^{2 \pi} d \varphi^{\prime} \int_{0}^{a} d s^{\prime} \int_{0}^{\pi}\left[\delta\left(\cos \theta^{\prime}-1\right)+\delta\left(\cos \theta^{\prime}+1\right)\right] \cdot \sin \theta^{\prime} d \theta^{\prime}
$$

$$
=\lambda \cdot a\left[\int_{0}^{\pi} \delta\left(\cos \theta^{\prime}-1\right) \cdot \sin \theta^{\prime} d \theta^{\prime}+\int_{\sigma}^{\pi} \delta\left(\cos \theta^{\prime}+1\right) \sin \theta^{\prime} d \theta^{\prime}\right]
$$

$$
=\lambda \cdot a \cdot[\underbrace{\int_{-1}^{0} \delta(x-1) d x}_{=1}+\underbrace{\int_{-1}^{0} \delta(x+1) d x}_{=1}]
$$

$$
=2 \lambda \cdot a
$$

$$
\rightarrow \quad \lambda=\frac{Q}{2 a}
$$

Potential : $V\left(\overrightarrow{v^{\prime}}\right)=\int_{v} S\left(\vec{x}^{\prime}\right) G\left(\vec{x}, \vec{x}^{\prime}\right) d^{3} \vec{v}^{\prime}$

Greens function for no boundary:

$$
G\left(\vec{r}, \vec{a}^{\prime}\right)=\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}=4 \pi \sum_{\ell m} \frac{x_{l}^{l}}{r_{2}^{l+1}} \cdot Y_{e m}^{*}\left(\mu^{\prime}, \varphi^{\prime}\right) Y_{l m}\left(\rho^{l}, \varphi\right)=
$$

$$
Y_{e m}(\ell, \varphi)=\sqrt{\frac{2 l+1 \cdot(l-m)!}{4 \pi(l+m)!}} \cdot P_{e_{m}}(\theta) e^{\cos \theta} e^{i m \varphi}
$$

$r>r^{\prime}=a$ and azinthal symmetry ($m=0$)

$$
\begin{aligned}
& L^{>} Y_{l m}(\varphi, \varphi)=\sqrt{\frac{2 l+1}{4 \pi}} \cdot \operatorname{Pe}(\theta) \\
& L_{>} V_{(\vec{x})}=\int_{r} \frac{\lambda \cdot 1}{2 \pi \pi^{\prime 2}}\left[\delta\left(\cos \theta^{\prime}-1\right)+\delta\left(\cos \theta^{\prime}+1\right)\right] \cdot 4 \pi \cdot \sum_{l} \frac{1}{2 l+1} \frac{r^{\prime l}}{r^{l+1}} \cdot P_{l}\left(\theta^{\prime}\right) \\
& \text { - } \frac{2 l+1}{4 \pi} P_{l}(\theta) \cdot d^{\prime 2} \cdot d r^{\prime} \sin \theta^{\prime} d \theta^{\prime} d \varphi^{\prime} \\
& =\sum_{l} \lambda \cdot \frac{1}{r^{l+1}} P_{l(\theta)} \cdot \int_{\theta}^{\alpha} \tau^{l l} d r^{\prime} \cdot \int_{0}^{\pi}\left[\delta\left(\cos \theta^{\prime}-1\right)+\delta\left(\cos \theta^{\prime}+1\right) \cdot P_{l^{\prime}\left(\theta^{\prime}\right)} \sin \theta^{\prime} d \theta\right. \\
& =\sum_{l} \frac{\lambda \cdot P_{e}(\theta)}{r^{l+1}} \cdot \frac{r^{\prime} \ell+1}{l+1} \int_{0}^{a} \cdot\left[\int_{0}^{\pi} \delta\left(\cos \theta^{\prime}-1\right) P_{e}\left(\theta^{\prime}\right) \sin \theta^{\prime} d \theta^{\prime}+\int_{0}^{\pi} \delta \cos \theta^{\prime}+1\right)^{\prime} P_{2\left(\theta^{\prime}\right)} \sin \theta^{\prime} d \theta^{\prime} \\
& =\sum_{l} \frac{\lambda \cdot P_{e}(\theta)}{r^{l+1}} \cdot \frac{a^{l+1}}{l+1}\left[P_{l}(1)+P_{l}(-1)\right]
\end{aligned}
$$

for odd $l: P_{l}(x)=-P_{l}(-x)$, for even $l: P_{l}(x)=P_{l}(x)$

$$
\begin{aligned}
\leadsto V_{(\vec{r})} & =\sum_{\text {even }} \frac{\lambda \cdot P_{l}(\cos \theta)}{r+1} \frac{a^{l+1}}{l+1} \cdot 2 P_{l}(1) \\
& =\frac{\lambda P_{0}(\cos \beta)}{r} \cdot a \cdot 2 P_{0}(1)+\frac{\lambda \cdot P_{2}(\cos , \ell)}{r^{3}} \frac{a^{3}}{3} \cdot 2 P_{2}(1)+\frac{\lambda P_{l}(\cos) \frac{a^{5}}{5} \cdot 2 P_{4(1)}}{r^{5}} \\
& =2 \cdot \lambda \cdot\left[\frac{a}{4} P_{0}(\cos \theta)+\frac{1}{3}\left(\frac{a}{r}\right)^{3} P_{2}(\cos \theta)+\frac{1}{5}\left(\frac{a}{r}\right)^{5} P_{4}(\cos \theta)+\cdots\right]
\end{aligned}
$$

Problem 3: (20 points) (A sphere of radius R carries the charge density $\rho(\vec{r})=\frac{\mathrm{A}(1-\cos \theta)}{\mathrm{r}^{2}}$, where A is a constant. Find the potential far from the sphere.

Sphere with radius R and charge density $\rho(\vec{r})=\frac{17 \cdot(1-\cos \theta)}{r^{2}}$
Find φ for from sphere!

$$
\rho(\theta, \theta)=\frac{R}{r^{2}}\left[P_{0}(\cos \theta)-P_{1}(\cos \theta)\right]
$$

A problem with azimuthal symmetry \rightarrow find potential on

$$
\begin{aligned}
& z \text {-axis } \leadsto z \rightarrow r \times P_{l}(\cos \theta) \\
& \varphi_{(z)}=\int \frac{\rho\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}}{4 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}^{\prime}\right|}=\frac{1}{4 \pi \varepsilon_{0}} \iiint \frac{A}{r^{2}}\left(P_{0}-P_{1}\right) \frac{r^{2} \sin \theta d \theta d \varphi d r}{\sqrt{z^{2}+r^{2}-2 z \cdot r \cos \theta}}
\end{aligned}
$$

integus sues φ give the factor 2π

$$
\begin{aligned}
& \frac{1}{\sqrt{z^{2}+r^{2}-2 z r \cos \theta}}=\frac{1}{z} \cdot \frac{1}{\sqrt{1+\left(\frac{r}{z}\right)^{2}-2 \cdot \frac{r}{z} \cos \theta}}=\frac{1}{z} \sum_{l=0}^{\infty}\left(\frac{r}{z}\right)^{l} P_{l}(\cos \theta) \\
& \rightarrow \varphi(z)=\frac{R \cdot 2 \pi}{4 \pi \xi_{0}} \int_{0}^{R} \int_{0}^{\pi} d \pi\left(P_{0}(\cos \theta)-P_{1}(\cos \theta)\right) \cdot \frac{1}{z} \sum_{e=0}^{\infty}\left(\frac{r}{z}\right)^{e} P_{e}(\cos \theta) \cdot d(\cos \theta) \\
& =\frac{A}{2 \varepsilon_{0}} \sum_{l=0}^{\infty} \int_{0}^{Q} \frac{1}{z} \cdot\left(\frac{\pi}{z}\right)^{l} \cdot \int_{-1}^{1}\left(P_{0}(x)-P_{1}(x)\right) P_{l}(x) d x d t \\
& \text { we know } \int_{-1}^{1} P_{l} \cdot P_{e}^{\prime} d x=\frac{2}{2 l+1} \cdot \delta_{l l^{\prime}} \\
& \leadsto \int_{-1}^{1} P_{0} \cdot P_{0} d x=2, \int P_{1} P_{1} d x=\frac{2}{3} \\
& \text { and } \int_{-1}^{n}\left(P_{0}-P_{n}\right) P_{l} d x=0 \text { if } l \geqslant 2 \quad \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
\leadsto \varphi(z) & =\frac{P}{2 \varepsilon_{0}} \int_{0}^{R} \frac{1}{z}\left[\left(\frac{r}{z}\right)^{0} \cdot 2-\left(\frac{r}{z}\right)^{1} \cdot \frac{2}{3}\right] d r \\
& =\frac{A}{\varepsilon_{0}} \cdot \frac{1}{z} \cdot \int_{0}^{R}\left[1-\frac{1}{3} \frac{r}{z}\right] d r \\
& =\frac{R}{\varepsilon_{0} \cdot z}\left(R-\frac{1}{6} \frac{R^{2}}{z}\right)=\frac{\frac{A \cdot R}{\varepsilon_{0}}\left(\frac{1}{z}-\frac{1}{6} \frac{R}{z^{2}}\right)}{(z>0)}
\end{aligned}
$$

$$
\begin{aligned}
\varphi(z, \theta) & =\frac{A R}{\varepsilon_{0}}\left[\frac{1}{r} P_{0}(\cos \theta)-\frac{1}{6} R \cdot \frac{1}{r^{2}} P_{1}(\cos \theta)\right] \\
& =\frac{A \cdot R}{\varepsilon_{0}}\left(\frac{1}{r}-\frac{R}{6+^{2}} \cos \theta\right)
\end{aligned}
$$

Problem 4: (20 points): Find the electric field inside and outside a dielectric sphere of radius R that has a uniform polarization vector P.

Dielectric sphere with ε_{1}-inside

$$
\varepsilon_{2} \text { - outside }
$$

Uniform polarization \vec{p} say parallel to z-axis, with $\hat{k}=(0,0, z)$

$$
\leadsto \vec{P}_{1}=P \cdot \hat{k}
$$

General solution of a problem with azimuthal symmetry:

$$
\varphi(r, \theta)=\sum_{l=0}^{\infty}\left[A_{l} \cdot r^{l}+B_{l}+-(l+1)\right] P_{l}(\cos \theta)
$$

inside of sphere: $r \leq R: \quad \varphi_{\text {in }}(r, \theta)=\sum_{l} A_{e} r_{l} P_{e}(\cos \theta)$
outside $\quad x \geqslant R: \quad \varphi_{\text {out }}(t, \theta)=\sum_{l} B_{l}+-(l+\pi) P_{l}(\cos \theta)$
at the sphere: $\operatorname{Cin}_{\text {in }}(R, 0)=\varphi_{\text {out }}(R, \theta)$

$$
\begin{aligned}
& \sim \sum_{l} A_{l} R^{l} P_{l}(\cos \theta)=\sum_{l} B_{l} R^{-(l+1)} P_{l}(\cos \theta) \\
& l: A_{l} R^{l}=B_{l} R^{-(l+1)} \leadsto B_{l}=A_{l} \cdot R^{2 l+1} \\
& \vec{D}_{2} \cdot \hat{n}-\vec{D}_{n} \cdot \hat{n}=\sigma=-\left(\vec{P}_{2}-\vec{P}_{n}\right) \cdot \hat{n}, \vec{P}_{1}=P \cdot \hat{k}_{v_{c o s e}}, \vec{P}_{2}=0 \\
& \sim\left(\varepsilon_{Q} \cdot \overrightarrow{E_{2}}-\varepsilon_{1} \cdot \vec{E}_{n}\right) \cdot \hat{n}=\left.\varepsilon_{2} \cdot \frac{\partial \varphi_{2}}{\partial \vec{\sigma}}\right|_{R}-\left.\varepsilon_{1} \frac{\partial \varphi_{1}}{\partial r}\right|_{R}=-\sigma=P \cdot \cos \theta \\
& \leadsto \varepsilon_{2} \cdot \sum_{l} B_{l} \cdot-(l+1) R^{-(l+2)} \cdot P_{l}-\varepsilon_{1} \sum_{l} A_{l} \cdot l \cdot R^{l-1} P_{l}=P \cdot \cos \theta \\
& \downarrow A_{l}=3_{e} \cdot R^{-(l l+1)}=P \cdot P_{1}(\cos \theta) \\
& \varepsilon_{2} \sum_{l} B_{l} \cdot(-l-1) R^{-(l+2)} P_{l}-\varepsilon_{l} \cdot \sum_{l} B_{l} \cdot l \cdot R^{-(l+2)} \cdot P_{l}=-P \cdot P_{1}(\operatorname{los}) \\
& \text { with } \int_{-1}^{1} P_{l} P_{l}^{\prime}=\frac{2}{2 l+1} \delta_{l l^{\prime}} \sim \\
& l=0: \quad B_{0}=0, \quad A_{0}=0
\end{aligned}
$$

$$
\begin{aligned}
& l=1: \quad-2 \varepsilon_{2} B_{1} R^{-3} P_{1}-\varepsilon_{1} \cdot B_{1} R^{-3} \cdot P_{1}=-P \cdot P_{1} \\
& \leadsto B_{1}=\frac{P \cdot R^{3}}{\left(2 \varepsilon_{2}+\varepsilon_{1}\right)}, \quad A_{1}=\frac{P}{2 \varepsilon_{2}+\varepsilon_{1}} \\
& l>1: \quad B_{l}=A_{l}=0 \\
& L \varphi_{\text {out }}=\frac{P \cdot R^{3}}{2 \varepsilon_{2}+\varepsilon_{1}} \cdot \frac{1}{t^{2}} \cdot P_{1}(\cos \theta)=\frac{1}{2 \varepsilon_{2}+\varepsilon_{1}} \cdot P \cdot R^{3} \frac{\cos \theta}{\lambda^{2}} \\
& \varphi_{\text {in }}=\frac{P}{2 \varepsilon_{2}+\varepsilon_{1}} \cdot r \cdot P_{1}(\cos \theta)=\frac{1}{2 \varepsilon_{2}+\varepsilon_{1}} P \cdot r \cdot \cos \theta \\
& E_{\text {rout }}=-\frac{\partial \varphi_{\text {out }}}{\partial t}=-\frac{2}{2 \varepsilon_{2}+\varepsilon_{n}} P \cdot R^{3} \frac{\cos \theta}{v^{3}} \\
& E_{\text {out }}=-\frac{1}{T} \frac{\partial \varphi_{\text {out }}}{\partial \theta}=\frac{1}{2 \varepsilon_{2}+\varepsilon_{1}} \cdot \frac{P R^{3}}{i^{3}} \sin \theta \\
& E_{r_{\text {in }}}=-\frac{\partial \varphi_{\text {in }}}{\partial \tau}=-\frac{p \cdot \cos \theta}{2 \varepsilon_{2}+\varepsilon_{n}} \\
& E_{\theta_{\text {in }}}=-\frac{1}{r} \frac{\partial \varphi_{i n}}{\partial \theta}=-\frac{1}{2 \varepsilon_{2}+\varepsilon_{2}} \cdot P_{0}+\sin \theta \\
& E_{z_{\text {in }}}=-\frac{\partial \varphi_{\text {in }}}{\partial z}=\frac{P}{2 \varepsilon_{2}+\varepsilon_{1}}=\text { constant - uniform electro field } \\
& E_{x}=E_{x}=0 \text { (inside) }
\end{aligned}
$$

outside: $\quad \varphi=\frac{1}{2 \varepsilon_{2}+\varepsilon_{1}}$ P. $\pi^{3} \cdot \frac{\vec{q} \cdot \hat{z}}{\lambda^{3}}$ - fid of dipole

Problem 5: (20 points): A plane interface separates two semi-infinite dielectric media with dielectric constants ε_{1} and ε_{2}. The surface may be taken as the plane $z=0$. A charge q in the dielectric ε_{1} is at $(0,0$, a) and a charge $-q$ in the dielectric ε_{2} is at ($o, 0,-a$). Find the forces between these two charges (hint: use the method of images and apply the proper boundary conditions).

Force on charge q in region (1) is due to induced charges (due to q)
 and charge $(-q)$ in region (2).

Induced charges \Leftrightarrow image charge of $q: Q_{1}=q \cdot \frac{\left(\varepsilon_{1}-\varepsilon_{2}\right)}{\varepsilon_{1}+\varepsilon_{2}} \quad$ i $(0,0,-a)$ Electric field in (1) due to charge $(-q) \rightarrow$ image change

$$
Q_{2}=(-q) \cdot \frac{2 \varepsilon_{1}}{\varepsilon_{2}+\varepsilon_{1}}
$$

Electric field $O(0,0, a)$ acting on q :

$$
\begin{gathered}
E_{1}=\frac{Q_{1}+Q_{2}}{4 \pi \varepsilon_{1}(2 a)^{2}} \leadsto F_{\text {are }} F_{1}=q \cdot E=\frac{q \cdot\left(Q_{1}+Q_{2}\right)}{4 \pi \varepsilon_{1}(2 a)^{2}} \\
F_{1}=\frac{q^{2}}{16 \pi \varepsilon_{1} a^{2}} \cdot\left(\frac{\varepsilon_{1}-\varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}}-\frac{2 \varepsilon_{1}}{\varepsilon_{1}+\varepsilon_{2}}\right)=-\frac{q^{2}}{16 \pi \varepsilon_{1} a^{2}} \\
\text { Similarly: } \quad F_{2}=\frac{-q^{2}}{16 \pi \varepsilon_{2} a^{2}} \text { - force on dirge }(-q)
\end{gathered}
$$

local charge density $\rho(x, y, z)$, placed in an extern, electrostatic field - described by $\phi^{(0)}(x, y, z)$.
a) The face on the charge distribution with $\rho(\vec{r})$ placed in an external field $E^{(0)}(\vec{v})$ is

$$
\vec{F}=\int \rho(\vec{v}) E^{(0)}(\vec{v}) d \vec{d}
$$

Since the field varies slowly we can expand each component of the elect. field:

$$
E_{i}^{(0)}(\vec{j})=E_{i}^{(0)}(0)+\sum_{j} x_{j}\left(\frac{\partial E_{i}^{(0)}(\vec{y})}{\partial y_{j}}\right)_{\vec{y}=0}+\frac{1}{2} \sum_{j=k} x_{j} \cdot x_{k} \cdot\left(\frac{\partial^{2} E_{i}^{(0)}(\vec{y})}{\partial y_{j} \partial y_{k}}\right)_{\vec{y}=0}+
$$

Now multiply by $\rho(i)$ and integrate

$$
\begin{aligned}
& F_{i}=E_{i}^{(0)}(0) \cdot \underbrace{\int \rho(\vec{v}) d^{s}}_{=q}+\sum_{j}\left(\frac{\partial E^{(0)}(\vec{y})}{\partial y_{j}}\right)_{\vec{y}=0} \cdot \underbrace{\int_{j} x_{j} \rho(\vec{v}) d^{3} \vec{v}}_{=P_{j}} \\
& +\frac{1}{2} \sum_{j, k}\left(\frac{\partial^{2} E_{i}^{(0)}(\vec{y})}{\partial y_{j} \partial y_{k}}\right) \cdot \int \underbrace{Q_{j k}}_{=\frac{1}{3}=0} \underbrace{x_{j} \cdot x_{k} \rho(\vec{r}) d^{3} \vec{r}}_{j}+\cdots \\
& \leadsto \vec{F}=q \cdot E_{i}^{(0)}(0)+\underbrace{\left.\vec{p} \cdot \nabla_{y} E_{i}^{(0)}(\vec{y})\right|_{\vec{y}=0}}_{=\left.\nabla\left(\vec{p} \cdot E_{i}^{(0)}\right)\right|_{x=0}}+\nabla\left[\frac{1}{6} \sum_{j, k} Q_{j k} \cdot \frac{\partial E_{i}}{\partial x_{k}}\right]+\cdots \\
& =q \cdot E_{c}^{(0)}+\nabla\left(\vec{p} \cdot \vec{E}^{(0)}\right)+\nabla\left[\frac{1}{6} \sum_{j, k} Q_{j k} \frac{\partial E_{j}}{\partial x_{k}}\right] \\
& \Rightarrow
\end{aligned}
$$

