Physics 8100 - Electromagnetic Theory I

Assignment \# 8 (due to Monday, November 27, 2017)

Problem 1: (20 points)
A line charge density $\sigma(\vartheta)=\mathrm{K} \cdot \cos (\vartheta)$ is glued over the surface of a spherical shell of radius R , where K is a constant. Find the resulting potential inside and outside the sphere.

Problem 2: (20 points)
A line charge density is distributed on the z-axis from $z=-a$ to $z=a$. Using the method of Green's function, find the potential for $r>a$ to the order of $(a / r)^{5}$.

Problem 3: (20 points)
A sphere of radius R carries the charge density

$$
\rho(\vec{r})=\frac{\mathrm{A}(1-\cos \theta)}{\mathrm{r}^{2}},
$$

where A is a constant. Find the potential far from the sphere.

Problem 4: (20 points)

Find the electric field inside and outside a dielectric sphere of radius R that has a uniform polarization vector \mathbf{P}.

Problem 5: (20 points)
A plane interface separates two semi-infinite dielectric media with dielectric constants ε_{1} and ε_{2}. The surface may be taken as the plane $\mathrm{z}=0$. A charge q in the dielectric ε_{1} is at (0 , 0 , a) and a charge -q in the dielectric ε_{2} is at ($0,0,-\mathrm{a}$). Find the forces between these two charges (hint: use the method of images and apply the proper boundary conditions).

