Fall 2017

Physics 8100 - Electromagnetic Theory I

Assignment \# 7 (due to Wednesday, November 13, 2017)
Problem 1: (30 points)
An infinitely long rectangular conductive tube has three sides grounded, while the fourth (imagined to be insulated from others by very tine gapes) is held at potential V_{o}. Find the potential at all interior points.!
Boundaries:

$$
\mathrm{x}=0, \Phi=0 ; \quad \mathrm{l} \quad \mathrm{x}=\mathrm{a}, \Phi=0 ; \quad \mathrm{l} \quad \mathrm{y}=0, \Phi=0 ; \quad \mathrm{l} \quad \mathrm{y}=\mathrm{b}, \Phi=\mathrm{V}_{\mathrm{o}} \text {] }
$$

Problem 2: (20 points)
Find the potential and the electric field strength along the axis of a thin uniformly charged circular disc of radius R and total charge q. Show that the normal component of the field changes by σ / ε_{0} on passing through the surface of the disc. Consider the field at large distances from the disc.

Problem 3: (20 points)
(a) Find the first two sets of non-vanishing moments, q_{lm}, for the following charge distribution

Hint: $\quad \rho(\vec{r})=\frac{\mathrm{q}}{2 \cdot \pi \cdot \mathrm{r}^{2}} \cdot[-\delta(\mathrm{r})+\delta(\mathrm{r}-\mathrm{a}) \cdot \delta[\cos (\theta)-1]+\delta(\mathrm{r}-\mathrm{a}) \cdot \delta[\cos (\theta)+1]]$
(b) Write down the multipole expansion of the potential due to this charge distribution, keeping only the first two sets of $\mathrm{q}_{1 \mathrm{~m}}$.

Problem 4: (30 points) - Jackson problem 3.5
A hollow sphere of an inner radius 'a' has the potential specified on its surface to be $\Phi=V(\vartheta, \varphi)$. Prove the equivalence of the two forms of the solution for the potential inside the sphere:
a) $\Phi(\vec{r})=\frac{\mathrm{a} \cdot\left(a^{2}-r^{2}\right)}{4 \cdot \pi \cdot^{2}} \cdot \int d \Omega^{\prime} \frac{V\left(\vartheta^{\prime}, \varphi^{\prime}\right)}{\left[r^{2}+a^{2}-a \cdot r-2 \cdot a \cdot r \cdot \cos \gamma\right]^{3 / 2}}$ with $\cos \gamma=\cos \vartheta \cdot \cos \vartheta^{\prime}+\sin \vartheta \cdot \sin \vartheta^{\prime} \cdot \cos \left(\varphi-\varphi^{\prime}\right)$
b)

$$
\Phi(\vec{r})=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{l, m} \cdot\left(\frac{r}{a}\right)^{l} \cdot \Psi_{l, m}(\vartheta, \varphi) ; \text { with } A_{l, m}=\int d \Omega^{\prime} \cdot \Psi_{l, m}\left(\vartheta^{\prime}, \varphi^{\prime}\right) \cdot V\left(\vartheta^{\prime}, \varphi^{\prime}\right)
$$

