Physics 8100 - Electromagnetic Theory I

Solutions for Homework \# 2

Problem\#1: (Jackson 1.1)

1 a) First consider a closed hollow conductor with interior charges. Total charge on the original conductor is Q ; charge place in the interior is q .
Take a Gaussian surface just outside the surface. Then

$$
\oint \overrightarrow{\mathrm{E}} \cdot \hat{\mathrm{n}}=\frac{1}{\varepsilon_{\mathrm{o}}} \cdot \int_{\mathrm{V}} \mathrm{~d}^{3} \mathrm{r} \cdot \rho(\overrightarrow{\mathrm{r}}) . \quad \text { So, } \quad \mathrm{E}_{\perp} \cdot \mathrm{A}=\frac{\mathrm{Q}+\mathrm{q}}{\varepsilon_{\mathrm{o}}} \quad \text { or } \quad \mathrm{E}_{\perp} \cdot \mathrm{A}=\frac{\mathrm{Q}+\mathrm{q}}{\mathrm{~A} \cdot \varepsilon_{\mathrm{o}}}
$$

And $\mathrm{E}_{\perp} \neq 0$, so the outside is not protected from those interior charges. Now consider a conductor with external charges. Take a path from point a on the surface to point b on the surface straight through the conductor. Then use:

$$
\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{l}=0 \quad \text { So, } \quad \int_{\text {surface }- \text { path }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{l}+\int_{\text {interior-path }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{l}=0
$$

But the integral over the surface part of the path is zero, since there is no flied arbitrarily close to the surface. Then

$$
\int_{\text {interior-path }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{l}=0
$$

But this means that, if $\overrightarrow{\mathrm{E}}_{\text {interior-path }} \neq 0, \quad \mathrm{~V}_{\mathrm{a}} \neq \mathrm{V}_{\mathrm{b}}$
However, a conductor is an equipotential. Therefore, the electric field on the interior of the sphere must be zero.
b) Consider a conductor and a path enclosing a bit of the surface. Now we know that:

$$
\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{l}=0
$$

Now, squish the side of the path which are perpendicular to the surface of the conductor; then their contribution to above integral is zero. So,

$$
\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{l}=\int_{\text {inside }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{l}-\int_{\text {outside }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{l} .
$$

But $\overrightarrow{\mathrm{E}}=0$ inside the conductor, so $\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \vec{l}=\int_{\text {outside }} \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \vec{l}=0 \quad$ or $\quad \mathrm{E}_{\text {Loutside }} \cdot l=0$
Since l is arbitrary, $\mathrm{E}_{\perp \text { outside }}=0$.
Therefore, the electric field just outside of a conductor is perpendicular to the surface of the conductor. Now take a Gaussian pill box enclosing the surface. Squish the side walls, so that they are infinitesimal. Then,

$$
\underset{\mathrm{S}}{ } \overrightarrow{\mathrm{E}} \cdot \hat{n}=\frac{1}{\varepsilon_{\mathrm{o}}} \cdot \int_{\mathrm{V}} \mathrm{~d}^{3} \mathrm{r} \cdot \rho(\overrightarrow{\mathrm{r}}) \quad \text { can be written as } \quad \oint_{\text {inside }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \hat{n}+\oint_{\text {outside }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \hat{n}=\frac{1}{\varepsilon_{\mathrm{o}}} \cdot \int_{\mathrm{V}} \mathrm{~d}^{3} \mathrm{r} \cdot \rho(\overrightarrow{\mathrm{r}})
$$

But $\mathrm{E}_{\text {inside }}=0$. Now squish the box so that $\overrightarrow{\mathrm{E}} \sim$ constant over A . Then,

$$
\oint_{\text {outside }} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \hat{n}=\frac{\mathrm{A} \cdot \sigma}{\varepsilon_{\mathrm{o}}}
$$

or $\mathrm{E}_{\text {outside }} \cdot \mathrm{A}=\frac{\mathrm{A} \cdot \sigma}{\varepsilon_{\mathrm{o}}} \Rightarrow \mathrm{E}_{\text {outside }}=\frac{\sigma}{\varepsilon_{\mathrm{o}}}$

Problem\#2: Jackson 1.2 - textbook page 51
Generalize $D(\alpha, x, y, z)$ as j-dim. delta function of the form

$$
\begin{aligned}
\delta^{(3)}\left(\vec{r}-\vec{r}_{0}\right) & =\frac{1}{(\alpha \cdot \sqrt{2 \pi})^{3}} \cdot \exp \left[-\frac{1}{2 \alpha^{3}}\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right)\right] \\
& =\delta\left(x-x_{0}\right) \cdot \delta\left(y-y_{0}\right) \cdot \delta\left(z-z_{0}\right)
\end{aligned}
$$

with the property: $\int d^{3+1} F(x, y, z) \delta^{(3)}\left(\vec{H}-\vec{x}_{0}\right)=F\left(x_{0}, y_{0}, z_{0}\right)$
Now assume $d x=d u / u, d y=d v / v, d z=d w / w, d^{3} v=d u d v d w / u \cdot v \cdot w$

$$
4\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=\frac{\left(u-u_{0}\right)^{2}}{u^{2}}+\frac{\left(u-u_{0}\right)^{2}}{v^{2}}+\frac{\left(w-\omega_{0}\right)^{2}}{w}
$$

For $\alpha \rightarrow 0: u, v$ and $\omega \rightarrow u_{0}, v_{0}, \omega_{0}$
which means we can interchange (x, y, z) with (u, v, w) by scaling (see notes)

$$
\begin{aligned}
& F\left(x_{0}, y_{0}, z_{0}\right)=\int \frac{d u d v d \omega}{u \cdot V \cdot W} F(u, v, \omega) \cdot \exp \left[-\frac{1}{2 x^{3}}\left\{\frac{\left(u-u_{0}\right)^{2}}{u^{2}}+\frac{\left(u-v_{0}\right)^{2}}{v^{2}}+\frac{\left(\omega-\omega_{0}\right)^{2}}{w^{2}}\right\}\right] \\
& =\int F(u, v, \omega) \cdot \frac{d u}{u} \cdot e^{-1 / 2 \alpha^{3} \cdot \frac{\left(u-u_{0}\right)^{2}}{u^{2}}} \cdot \frac{d v}{V} e^{-1 / 2 \alpha^{3}\left(v-v_{0}\right)^{2}} \frac{d \omega}{v^{2}} \cdot \frac{d}{W} e^{-1 / 2 x^{3}\left(\frac{\left(\omega-u_{0}\right)^{2}}{w}\right.} \\
& =\int \frac{d^{3}+}{(\sqrt{2 \pi} \cdot \alpha)^{3}} \cdot F(x, y, z) e^{-\frac{1}{2 \alpha 3^{3}} \cdot\left(x-x_{0}\right)^{2}} \cdot e^{\left.-\frac{1}{2 \alpha}\right)^{3}\left(y-y_{0}\right)^{2}} \cdot e^{-\frac{1}{2 x} x^{\cdot}\left(z-z_{0}\right)^{2}}
\end{aligned}
$$

with volume element $d^{3_{r}}=d x d y d z=\frac{1}{U \cdot v, W} \cdot d u d v d w$ compare δ-function:

$$
\begin{aligned}
& \text { comparted-function: } \\
& \rightarrow \delta\left(+-r_{0}\right)=\delta\left(u-u_{0}\right) \delta\left(v-v_{0}\right) \delta\left(w-\omega_{0}\right) \cdot(u \cdot v \cdot w)
\end{aligned}
$$

Problem\#3: Jackson 1.5 - textbook page 51

$$
\begin{aligned}
& \phi(\nu)=\frac{q e^{-\alpha \cdot v}\left(1+\frac{\alpha \nu}{2}\right)}{4 \pi \varepsilon_{0} \cdot r} \\
& \text { Passion's Eq. } \nabla^{2} \phi(r)=\frac{-\rho(r)}{\varepsilon_{0}}, \quad \nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) \\
& \nabla^{2} \phi=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial}{\partial r}\left(\frac{e^{-\alpha r}}{r}+\frac{\alpha}{2} e^{-\alpha \cdot \omega}\right)\right] \\
& \text { Using } \nabla^{2} \frac{1}{r}=-4 \pi \delta(\vec{r}) \leftarrow \text { point change } \\
& +\nabla^{2} \phi=\frac{q}{4 \pi \varepsilon_{\varepsilon}} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial}{\partial r} e^{-\alpha r}\left(\frac{1}{r^{r}}+\frac{\alpha}{\alpha}\right)\right] \\
& =\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[e^{-\alpha r}\left(-\alpha \cdot r-\frac{r^{2} \alpha^{2}}{2}\right)+r^{2} e^{-\alpha r}\left(\frac{1}{-r^{2}}\right)\right] \\
& {\left[e^{-\alpha r}\left(-1-\alpha r-\frac{r^{2} \alpha^{2}}{2}\right)\right]} \\
& =\frac{9}{4 \pi \varepsilon_{0}}\left[\frac{e^{-\alpha \cdot r}}{v^{2}}\left(\alpha+\alpha^{2} \lambda+\frac{r^{2} \alpha^{3}}{2}\right)+\frac{e^{-\alpha r}}{\nu^{2}}\left(-\alpha-\alpha^{2} \gamma\right)\right] \\
& =\frac{q}{4 \pi \varepsilon_{0}} \frac{e^{-\alpha \cdot r}}{\lambda^{2}}\left(\frac{r^{2} \alpha^{2}}{2}\right)=\frac{q}{8 \pi \varepsilon_{0}} \alpha^{3} e^{-\alpha \cdot r}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
S(\vec{v}) & =-\frac{q}{4 \pi} \nabla^{2}\left(\frac{1}{r}\right)-\varepsilon_{0} \nabla^{2} \phi \\
& =q \delta(r)-\frac{q}{8 \pi} \alpha^{3} e^{-\alpha r}
\end{array}\right\}
$$

That is, the charge distribution consist of a positive point change at the origin, plus an exp -decreasing negatively changed cloud.

Problem\#4: An infinitely long cylinder of radius R has a line charge density. Find the electric field and its scalar potential λ_{o} everywhere

$$
\begin{aligned}
& \text { a.) } \\
& \int_{S} d^{2} r \vec{E} \cdot d \hat{n}=\frac{1}{\varepsilon_{0}} \int_{V} d^{s} d \rho(t)
\end{aligned}
$$

\downarrow cylindrical coord.

$$
2 \pi \rho \cdot L \cdot E_{p}=\frac{1}{\varepsilon_{0}} \lambda_{0} \cdot L, \rho<R
$$

For a conductor, all charges wore on the outer surface.
For $\rho<R \rightarrow E=0 ; \quad$ from $E=-\nabla \phi, \phi=-\int_{0}^{v} \vec{E} d \omega=0$
$L \phi=$ const, $\operatorname{let}^{\prime}$'s take $\phi=0$ everywhere inside of Eylinde.

$$
\begin{aligned}
& \text { For } \rho>R: \quad E_{\rho}=\frac{\lambda_{0}}{2 \pi \varepsilon_{0} \rho} \cdot \hat{\rho} \\
& \sim \phi(\rho)=-\int_{R}^{\rho} \vec{E} d \vec{N}=-\frac{\lambda_{0}}{2 \pi \varepsilon_{0}} \int_{R}^{\rho} \frac{1}{\rho^{\prime}} d \rho^{\prime}=-\frac{\lambda_{0}}{2 \pi \varepsilon_{0}} \ln (\rho / R)
\end{aligned}
$$

b.)

$$
\begin{array}{rlrl}
S(\vec{v}) & =\frac{\lambda_{0}}{\pi R^{2}} & \text { for } \quad r \leqslant R \\
& =0 \quad \text { for } r>R
\end{array}
$$

$$
r<R: \quad E_{r} \cdot 2 \pi \cdot त=\frac{1}{\varepsilon_{0}} \int \rho(\vec{r}) \cdot \rho d \hat{\varphi} d \varphi d z=\frac{1}{\varepsilon_{0}} \int \frac{\lambda_{0}}{\pi R^{2}} \rho d \varphi d \varphi d z
$$

$$
=\frac{\lambda_{0}}{\varepsilon_{0} R^{2}} \int_{0}^{+} \rho d \varphi=\frac{\lambda_{0}}{\varepsilon_{0} R^{2}} \mu^{2}
$$

$$
\leadsto E_{r}=\frac{\lambda_{0} \cdot \lambda}{2 \pi \varepsilon_{0} R^{2}} \cdot \hat{\gamma}
$$

$$
v>R: \quad \vec{E}=\frac{\lambda_{0}}{2 \pi \varepsilon_{0} \cdot r}, \quad \text { with } \phi(a)=0 \quad(a<R)
$$

$$
\leadsto \int_{a}^{N} \vec{E} \cdot d \vec{r}=-\phi(N)+\underbrace{\phi(a)}_{=0}
$$

For $r<R: \quad \int_{a}^{r} \frac{\lambda_{0}}{2 \pi \varepsilon_{0}} R^{2} r d \lambda=\left.\frac{\lambda_{0}}{2 \pi \varepsilon_{0}} R^{2}\left(\frac{\theta^{2}}{2}\right)\right|_{a} ^{r}$

$$
\leadsto \phi(\lambda)=-\frac{\lambda_{6}}{4 \pi \epsilon} R^{2}\left(\lambda^{2}-a^{2}\right)
$$

for $v>R: \quad \phi_{(N)}=-\int_{0}^{v} \frac{\lambda_{0}}{2 \pi \varepsilon_{0}+} d N=-\frac{\lambda_{0}}{2 \pi \varepsilon_{0}} \ln \left(\frac{\alpha}{a}\right)$

Problem\#5: The electric potential of a dipole \vec{P} at origin is $\ldots .$.
a.) Scalar potential of dipol a origin

$$
\phi=\frac{1}{4 \pi \varepsilon} \frac{\vec{\rho} \cdot \vec{x}}{r 3}
$$

\vec{p} : dipol moment along $\overrightarrow{\mathrm{e}}$-axis

(from $-q \rightarrow+q$ with alistance α)

$$
\begin{aligned}
|\vec{\rho}|=q \cdot d, \quad \vec{p} & =P_{x} \cdot \hat{x}+P_{y} \cdot \hat{y}+P_{e} \cdot \hat{z} \\
\vec{x} & =x \cdot \hat{x}+y \cdot \hat{y}+z \cdot \hat{z} \quad \text { (Posinom vector) }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \vec{P} \cdot \vec{x}=P_{x} \cdot x+P_{y} \cdot y+P_{z} \cdot z \\
& \vec{E}=-\nabla \phi=-\left[\frac{\partial \phi}{\partial x} \cdot \hat{x}+\frac{\partial \phi}{\partial y} \cdot \hat{y}+\frac{\partial \phi}{\partial z} \cdot \hat{z}\right] \\
& \quad \frac{\partial \phi}{\partial x}=\frac{1}{4 \pi \xi} \frac{\partial}{\partial x}\left[\frac{P_{x} \cdot x+P_{y} \cdot y+P_{z} \cdot z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right]=\cdots=\frac{1}{4 \pi \xi} P_{x} \cdot\left[\frac{1}{r 3}-\frac{3 x^{2}}{r \delta}\right]
\end{aligned}
$$

similarly $\partial \phi / \partial$ y and $\partial \phi / \partial z$

$$
\rightarrow \vec{E}=-\nabla \phi=\frac{-\vec{p}}{4 \pi \varepsilon_{\varepsilon}}+\frac{3}{4 \pi \varepsilon_{0}+\tau^{5}} \cdot\left[x^{2} p_{x} \hat{x}+y^{2} \cdot p_{y} \cdot \hat{y}+z^{2} \cdot p_{z} \cdot \hat{z}\right]
$$

b.) $\vec{\rho} \| l z$-axis:

$$
\begin{aligned}
\vec{p}=\rho \cdot \hat{z} & \rightarrow \vec{p} \cdot \vec{x}=\rho \hat{z} \cdot[x \cdot \hat{x}+y \cdot \hat{y}+z \cdot \hat{z}]=\rho \cdot z \\
\Leftrightarrow \phi & =\frac{1}{4 \pi \varepsilon} \frac{\rho \cdot z}{r^{3}}=\frac{1}{4 \pi} \cdot \frac{\rho \cdot \cos \theta}{r^{2}}, \quad(z=+\cos \theta!)
\end{aligned}
$$

$$
\begin{aligned}
& \text { with } \nabla \phi=\hat{\theta} \partial \phi \frac{\partial r}{}+\hat{\theta} \frac{1}{\lambda} \frac{\partial \phi}{\partial \theta}+\hat{\varphi} \cdot \frac{1}{r \cdot \sin \theta} \partial \phi / \partial \varphi \\
& L \epsilon_{r+}=\frac{\rho \cdot \cos \theta}{2 \pi \varepsilon_{0} r^{3}}, \quad E_{\theta}=\frac{\rho \cdot \sin \theta}{4 \pi \varepsilon_{0} r^{3}}, E_{\varphi}=0
\end{aligned}
$$

