

Assignment # 2 (due to Monday, September 25, 2017)

- 1) **Problem 1.1**, Jackson textbook (page 50 / 51): Use the Gauss's theorem to prove the following:
 - a) A closed hollow conductor shields its interior from fields due to charges outside, but does not shield its exterior from field due to charges placed inside.
 - b) The electric field at the surface of a conductor is normal to the surface and has the magnitude σ / ε_0 , where σ is the charge density per unit area on the surface.
- 2) **Problem 1.2**, Jackson textbook (page 51): The Dirac delta function in three dimensions can be taken as the improper limit as $\alpha \rightarrow 0$ of the Gaussian function

$$D(\alpha; x, y, z) = (2 \cdot \pi)^{-3/2} \cdot \alpha^{-3} \cdot \exp\left[-\frac{1}{2 \cdot \alpha^2} \cdot (x^2 + y^2 + z^2)\right] \alpha^{-1} = \alpha_o / 2, \alpha_o$$

Consider a general orthogonal coordinate system specified by the surfaces u = constant, v = constant, w = constant, with the length elements du/U, dv/V and dw/W in the three perpendicular directions. Show that

 $\delta(\vec{x} - \vec{x}') = \delta(u - u') \cdot \delta(v - v') \cdot \delta(w - w') \, \mathbf{U} \cdot \mathbf{V} \cdot \mathbf{W}$

by considering the limit of the Gaussian above. Note that as $\alpha \to 0$ only the infinitesimal length element need to be used for the distance between the points in the exponent.

3) Problem 1.5, Jackson textbook (page 51): The time-average potential of a neutral hydrogen atom is given by

$$\Phi = \frac{q}{4 \cdot \pi \cdot \varepsilon_o} \cdot \frac{e^{-\alpha \cdot r}}{r} \cdot \left(1 + \frac{\alpha \cdot r}{2}\right) \alpha^{-1} = \alpha_o / 2, \ \alpha_o$$

where q is the magnitude if the electric charge, and $\alpha^{-1} = \alpha_o / 2$, α_o being the Bohr radius. Find the distribution of charge (both continuous and discrete) that will give this potential and interpret your result physically.

- 4) An infinitely long cylinder of radius R has a line charge density λ_o . Find the electric field and its scalar potential λ_o everywhere for
 - b) If the charge density is uniformly distributed on the surface (i.e. the cylinder is a conductor) and
 - b) If the charge density is uniformly distributed over the whole volume (i.e. the cylinder is an insulator). Assume that the potential is zero at r = a, with a < R.

5) The electric potential of a dipole \vec{P} at origin is $\Phi = \frac{1}{4 \cdot \pi \cdot \varepsilon_o} \cdot \frac{\vec{P} \cdot \vec{X}}{r^3}$

- a) Find the electric field using $E = -\nabla \Phi$
- b) If $\vec{P} = P \cdot \vec{k}$ (parallel to z-axis), find the spherical field components E_r , E_{θ} , and E_{Φ} .