

## PHYS 3800 "Optics"



## Homework #4: Geometric Optics "Determine System matrix" Spring 2002

Find the system matrix for a Cooke triple camera lens. Light is entering from the left encounters six spherical surfaces whose radii of curvature are, in turn,  $R_1$  to  $R_6$ . The thickness of the three lenses are, in turn,  $d_1$  to  $d_3$ , and the refractive indicies are  $n_1$  to  $n_3$ . The first and second air separation between lens surfaces are  $l_1$  and  $d_1$ .



| Radii                     | Thickness               | Distance                | Refractive index          |
|---------------------------|-------------------------|-------------------------|---------------------------|
| $R_1 = 19.4 \text{ mm}$   | d <sub>1</sub> =4.29 mm | l <sub>1</sub> =1.63 mm | n <sub>1</sub> =1.6110 mm |
| $R_2 = -128.3 \text{ mm}$ | d <sub>2</sub> =0.93 mm | $l_2 = 12.9 \text{ mm}$ | n <sub>2</sub> =1.5744 mm |
| $R_3 = -57.8 \text{ mm}$  | $d_3 = 3.03 \text{ mm}$ |                         | n <sub>3</sub> =1.6110 mm |
| $R_4 = 18.9 \text{ mm}$   |                         |                         |                           |
| $R_5 = 311.3 \text{ mm}$  |                         |                         |                           |
| $R_6 = -66.4 \text{ mm}$  |                         |                         |                           |

- (a) Calculate the system matrix and sketch the lens system with its cardinal points.
- (b) How far behind the last surface must the film plane occur to focus paraxial rays?