PHYS 3800 "Optics"

Homework \#4: Geometric Optics "Determine System matrix"
Spring 2002

Find the system matrix for a Cooke triple camera lens. Light is entering from the left encounters six spherical surfaces whose radii of curvature are, in turn, R_{1} to R_{6}. The thickness of the three lenses are, in turn, d_{1} to d_{3}, and the refractive indicies are n_{1} to n_{3}. The first and second air separation between lens surfaces are l_{1} and d_{1}.

Radii	Thickness	Distance	Refractive index
$\mathrm{R}_{1}=19.4 \mathrm{~mm}$	$\mathrm{~d}_{1}=4.29 \mathrm{~mm}$	$\mathrm{l}_{1}=1.63 \mathrm{~mm}$	$\mathrm{n}_{1}=1.6110 \mathrm{~mm}$
$\mathrm{R}_{2}=-128.3 \mathrm{~mm}$	$\mathrm{~d}_{2}=0.93 \mathrm{~mm}$	$\mathrm{l}_{2}=12.9 \mathrm{~mm}$	$\mathrm{n}_{2}=1.5744 \mathrm{~mm}$
$\mathrm{R}_{3}=-57.8 \mathrm{~mm}$	$\mathrm{~d}_{3}=3.03 \mathrm{~mm}$		$\mathrm{n}_{3}=1.6110 \mathrm{~mm}$
$\mathrm{R}_{4}=18.9 \mathrm{~mm}$			
$\mathrm{R}_{5}=311.3 \mathrm{~mm}$			
$\mathrm{R}_{6}=-66.4 \mathrm{~mm}$			

(a) Calculate the system matrix and sketch the lens system with its cardinal points.
(b) How far behind the last surface must the film plane occur to focus paraxial rays?

