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Enhanced Brain Network Activity
in Complex Movement Rhythms:

A Simultaneous Functional Magnetic Resonance
Imaging and Electroencephalography Study

Bhim M. Adhikari,1,2 Charles M. Epstein,3 and Mukesh Dhamala1,4–7

Abstract

Generating movement rhythms is known to involve a network of distributed brain regions associated with motor
planning, control, execution, and perception of timing for the repertoire of motor actions. What brain areas are
bound in the network and how the network activity is modulated by rhythmic complexity have not been completely
explored. To contribute to answering these questions, we designed a study in which nine healthy participants per-
formed simple to complex rhythmic finger movement tasks while undergoing simultaneous functional magnetic res-
onance imaging and electroencephalography (fMRI-EEG) recordings of their brain activity during the tasks and rest.
From fMRI blood oxygenation-level-dependent (BOLD) measurements, we found that the complexity of rhythms
was associated with brain activations in the primary motor cortex (PMC), supplementary motor area (SMA), and
cerebellum (Cb), and with network interactions from these cortical regions to the cerebellum. The spectral analysis
of single-trial EEG source waveforms at the cortical regions further showed that there were bidirectional interactions
between PMC and SMA, and the complexity of rhythms was associated with power spectra and Granger causality
spectra in the beta (13–30 Hz) frequency band, not in the alpha (8–12 Hz) and gamma (30–58 Hz) bands. These re-
sults provide us new insights into the mechanisms for movement rhythm complexity.
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Introduction

Rhythm refers to the division of time through distinct
order and patterns of events, objects, symbols, or

signs. Rhythm formation can integrate basic levels of sen-
sory perception and motor entrainment into complex cogni-
tive processes and motor adaptations (Thaut et al., 1999a).
We can recognize, discriminate, generate, and maintain a
large number of rhythms and synchronize motor movements
with an external rhythmic cue (Haken, 1996; Kelso, 1995).
Timing or frequency of movements determines the stability
of synchronization. Complexity of multifrequency motor
rhythms is generally characterized by the ratios of frequen-
cies or time intervals involved. Several important aspects
of the neurobiology of the rhythms such as neural represen-
tation of integer and noninteger ratio rhythms (Sakai et al.,

1999), neural correlates of the motor rhythm complexity
(Dhamala et al., 2003), brain activity with temporal com-
plexity of rhythms (Lewis et al., 2004), neural correlates of
rhythmic versus discrete movements (Schaal et al., 2004),
and the neural basis of human dance (Brown et al., 2006)
were revealed. Furthermore, neuroimaging studies have lately
begun to investigate the neurobiological basis of motor rhythm
generation (Brown et al., 2006; Dhamala et al., 2003; Lewis
et al., 2004; Sakai et al., 1999; Schaal et al., 2004; Verstynen
et al., 2005). Several studies have demonstrated that rhythmic
synchronization is an effective tool for rehabilitation in pa-
tients with Parkinson’s disease (Arias and Cudeiro, 2008;
Howe et al., 2003; McIntosh et al., 1997; Prassas et al.,
1997; Rochester et al., 2009; Thaut et al., 1996), traumatic
brain injury (Hurt et al., 1998; Kenyon and Thaut, 2000), spinal
cord injury (de l’Etoile, 2008), stroke (Hayden et al., 2009;
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Roerdink et al., 2007, 2009), Huntington’s disease (Thaut
et al., 1999b), and in patients with cerebellar ataxia (Abiru
et al., 2008).

Recent advances in neuroimaging techniques have en-
abled us to acquire simultaneous recordings with multiple mo-
dalities. Noninvasive neuroimaging techniques can be divided
into two groups based on their measurement principles: electro-
physiological measurement, such as electroencephalography
(EEG) and magnetoencephalography (MEG), and hemody-
namic measurement, such as functional magnetic resonance im-
aging (fMRI) and near-infrared spectroscopy (NIRS). EEG/
MEG record millisecond changes in brain electrical but
have poor spatial resolution, while fMRI/NIRS can provide
spatial localization of activity within millimeters but are suf-
fered from the slow vascular response limiting their temporal
resolution (Fazli et al., 2012).

The multimodal approach can overcome these limits by
complementing each signal (Biessmann et al., 2011; Friston,
2009; Shibasaki, 2008). Simultaneous fMRI-EEG data re-
cording solve the problem to get high spatial and temporal
resolution to study the brain dynamics in an efficient manner
and give us information about the brain activity and networks
(de Souza et al., 2013; Meyer et al., 2011; Novitskiy et al.,
2011; Ostwald et al., 2011). Even in well-established cogni-
tive experiments, the behavior of the same participant in the
same task can differ substantially between EEG and fMRI re-
cording sessions (Ullsperger and von Cramon, 2001), as EEG
recordings are carried out in a sound-attenuated chamber and
upright position, whereas fMRI blood oxygenation-level-
dependent (BOLD) signals are recorded in a bit noisy MRI
environment and a supine position. The advantage of simul-
taneous fMRI-EEG recordings lies clearly in otherwise inev-
itable differences of subject preparation, data acquisition,
and variable behavioral outcomes between separate record-
ing sessions (Ullsperger, 2010). Simultaneous protocols not
only guarantee identical sensory stimulation, perception, be-
havior, and avoid order or repetition effects (Debener et al.,
2006) but also provide a unique way to study how these in-
trinsic brain states interact with event-related, extrinsic pro-
cessing. More recent developments in amplifier design, and
artifact-correction procedures now make it much easier to
obtain reasonable EEG data quality (Debener et al., 2007;
Iannetti et al., 2005; Niazy et al., 2005; Sammer et al., 2005).

The brain signals from fMRI and/or EEG measurements
can be used to extract large-scale brain connectivity patterns.
The information of functional interaction obtained by a sym-
metric measure such as cross-correlation has been referred to
as functional connectivity (Friston et al., 1993). Granger cau-
sality (GC) (Granger, 1969, 1980) can be used to estimate di-
rected functional connectivity. This technique is based on the
notion of linear prediction of one signal by incorporating the
past information of another signal. This approach does not
require any assumption of prior connectivity structures as re-
quired in structural equation modeling (Buchel and Friston,
1997; McIntosh and Gonzalez-Lima, 1994), nonlinear sys-
tem identification techniques (Friston and Buchel, 2000),
and Bayesian estimation of deterministic state-space models
(Friston et al., 2003). GC methods have been successfully ap-
plied to electrophysiological animal data (Baccala and Same-
shima, 2001; Bernasconi and König, 1999; Bernasconi et al.,
2000; Brovelli et al., 2004; Liang et al., 2000, 2017), human
EEG data (Hesse et al., 2003; Kaminski et al., 2001), and

human fMRI data (Goebel et al., 2003, 2004; Harrison et al.,
2003; Sato et al., 2006). Recently, a model-free, copula-
based GC method has been applied to both simulations and
neural data (Hu and Liang, 2014).

Here we designed a rhythmic finger-tapping (RFT) task
with different beat complexities and collected high-quality
simultaneous fMRI-EEG signals. The present study aimed
at applying GC to BOLD signals to investigate the pattern
of directed interactions within the regions involved in the
generation of motor rhythms and examine the interaction
patterns using the EEG source signals from the cortical
brain activation regions of the sensorimotor network. We
also compared the oscillatory activity of these nodes at rest
and RFT task. We applied GC methods to extract comple-
mentary information from fMRI-EEG simultaneous record-
ings about the brain activity flow patterns among motor
regions during RFT task.

Materials and Methods

Participants

There were nine participants (eight males, one female;
mean age – standard deviation = 26.6 – 4.1 years), who com-
pleted all the three simultaneous fMRI-EEG recording ses-
sions. All participants had normal or corrected to normal
vision and reported normal neurological history. Participants
provided signed informed consent forms and were compen-
sated for their participation in the experiment. The Institu-
tional Review Board of Georgia State University approved
the study.

Data acquisition and analysis

Before setting up for simultaneous fMRI-EEG acquisition,
participants were informed about the details of the task and
took part in a practice session to familiarize them with the
task. Following the EEG setup, participants were briefly
explained on the basic principles of EEG and how to mini-
mize introducing contaminants into the ongoing EEG sig-
nals. The experiment consisted of three functional runs,
each run had the durations for rest and RFT tasks. Each
run was 8-min long, during which the subject was asked to
rest (equivalently, 0 beat rhythm) for a minute and perform
RFT on a response box with different beat rhythms (1, 2,
and 3), a minute each. The visual cues were 0 for motor-resting
condition or for 0-beat rhythm (B0), 1 for 1-beat rhythm (B1), 2
for 2-beat rhythm (B2), and 3 for 3-beat rhythm (B3). During
the presentation of 0, subjects were asked to keep their right
index finger in contact with the button maintaining a slight
pressure but without any movement. Each visual cue (0, 1,
2, or 3) appeared twice, a minute each in randomized sequence
within a run. The task trial sequence was displayed and random-
ized using stimulus software presentation (www.neurobs.com).

EEG was recorded using an MRI-compatible EEG system
with a 68-channel electrode cap, AgCl sintered electrodes,
and SynAmps2 amplifiers at a sampling rate of 10 kHz/channel
(Neuroscan Systems, Charlotte, NC). Analog-to-digital con-
version was performed at a resolution of 24 bits. The elec-
trode cap was aligned to standard cranial fiducials and
exploring electrodes were referenced against the right mas-
toid. Electrode impedances were kept below 10 kO. An
fMRI pulse was used as a trigger to simultaneously start
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the stimulus presentation for displaying visual cues and EEG
recordings.

The EEG data, contaminated by gradient artifacts due to
magnetic field gradients, and ballistocardiogram (BCG) arti-
facts due to cardiac pulsations, were processed in BrainVision
Analyzer 2 (Brain Products, Germany), which detected and
corrected the EEG artifacts. During the preprocessing step,
the average of the recorded EEG data was used as a new ref-
erence (average reference). MR-induced artifacts in the EEG
signal were subtracted from the raw data using standard in-
built algorithms (Allen et al., 1998, 2000). The MR-gradient
artifact (obtained by utilizing the repetitiveness of the artifact
shape to form an average artifact template) was removed and
the data were downsampled to 200 Hz, with a low-pass filter,
58 Hz, with 48 as the slope for finite impulse response filter
before pulse artifact correction. The cardioballistic artifact
caused by movement due to heartbeat was subtracted from
the EEG data. QRS complexes of the heartbeat were semiau-
tomatically identified in the BCG channel, which showed a
clearly detectable R-peak. Since the cardioballistic artifact
is highly variable across time, subtraction templates were
continuously recalculated using a sliding average. After the
corrections for gradient and cardioballistic artifacts, the
data were low-pass filtered at 58 Hz to attenuate high-
frequency noise and then an independent component analysis
was performed to eliminate artifacts of eye movements, eye
blinks, muscle activity, and residual MR artifacts.

Besides these corrections, data from each recording ses-
sion from each individual subject were thoroughly inspected
visually and data from bad electrodes were discarded and
replaced, when appropriate, by spatial interpolation of the re-
cordings from the neighboring working electrodes. The pre-
processed data were then imported using MATLAB-
interface in Analyzer and read in EEGLAB format, and
later separated into data segments for B0, B1, B2, and B3

based on behavioral trial sequences. These trial segments
were used to reconstruct the EEG source waveforms using
the minimum norm estimate (MNE) technique, one of the in-
verse solution approaches (Hamalainen and Ilmoniemi,
1994; Wang et al., 1992). The MNE estimates the source ac-
tivity without a priori assumption about the sources’ location
and activity. In this study, we selected the cortical brain ac-
tivation loci derived from fMRI images.

fMRI data

The whole-brain MRI was done on a 3-Tesla Siemens
scanner in the Biomedical Imaging Technology Center at
Emory University, Atlanta, GA. The functional scans were
acquired with T2*-weighted gradient echo-planar imaging
protocol with the following parameters: echo time (TE) = 32
ms, repetition time (TR) = 2000 ms, flip angle = 90�, voxel
size = 3 · 3 · 4 mm3, field of view = 256 · 256 mm, matrix
size = 64 · 64, and 33 axial slices each of 5 mm thickness.
High-resolution anatomical images were acquired using a
magnetization-prepared rapid gradient-echo sequence with
the parameters: TR = 2300 ms, TE = 2.91 ms, flip angle = 9�,
and voxel size = 1 · 1 · 1 mm3. Statistical Parametric Map-
ping 8 (SPM8) (www.fil.ion.ucl.ac.uk/spm) software was
used for preprocessing the fMRI data. We performed the
following steps: slice timing correction, motion correction,
coregistration to individual anatomical image, and then

normalization to Montreal Neurological Institute (MNI)
template (Friston et al., 1995). The voxels were resized to
3 · 3 · 3 mm3 per voxel resolution. Spatial smoothing of the
normalized image was done with an 8-mm full-width at half-
maximum isotropic Gaussian kernel.

A random-effect, model-based, univariate statistical anal-
ysis was performed in a two-level procedure. At the first
level, a separate general linear model (GLM) was specified
as per the task sequences. In GLM analysis, the conditions:
B0, B1, B2, B3, and six motion parameters were included.
The six motion parameters, entered as nuisance covariates,
were regressed out of the data. Individual contrast images
from the first-level analysis were then entered and a second-
level analysis for a separate one-sample t-test. The summary
statistical maps thus obtained were then thresholded
[( p < 0.001, uncorrected; a cluster size (k > 10)] and overlaid
on high-resolution structural image in MNI orientation. We
then performed multiple comparison correction on all activa-
tion t-maps using Monte Carlo simulation implemented in
AFNI (Cox, 1996) (AFNI 3dClusterSim http://afni.nih.gov/
afni/doc/manual/3dclust.pdf) (Cox et al., 2016).

Connectivity analysis-fMRI

The regions of interest (ROIs) were based on brain activa-
tion t-maps from task versus rest contrast. We defined three
ROIs, by generating a sphere of 6 mm radius. The center co-
ordinates were (�45, �16, 52) for the left primary motor cor-
tex (LPMC), (0, �1, 61) for the supplementary motor area
(SMA), and (21, �49, �26) for the right cerebellum (RCb).
The time courses from all the voxels within each ROI and
all subjects were extracted for each experimental task and
rest blocks. We performed GC analysis to characterize the
directional influences between these ROIs.

For each ROI data, we constructed hidden neural signals
by hemodynamic deconvolution as done in previous studies
(David et al., 2008; Handwerker et al., 2004; Roebroeck
et al., 2011; Valdes-Sosa et al., 2011; Wu et al., 2013).
The reason behind this is fMRI-BOLD signals are believed
to be originated from smoothing of neuronal activity by the
hemodynamic response function (Aguirre et al., 1998; Hand-
werker et al., 2004). The segmented deconvolved BOLD
time series after removing the ensemble-mean separately
from each voxel and subject were treated as trials for reliable
estimates of the network measures. We calculated the GC
spectra by the parametric approach (Dhamala et al., 2008).
To find significance level of GC, we constructed surrogate
data sets by randomly permuting trial or segment order
from each participant and task condition, computed GC
from each data set, built a distribution of maximum GC val-
ues, and estimated the threshold for significant GC as in pre-
vious studies (Blair and Karniski, 1993; Brovelli et al.,
2004). The threshold was thus based on the null hypothesis
that there was no statistical interdependence between nodes
when trials were randomized. We computed GC spectra
from all possible pairs of ROIs with a minimum of 1000 ran-
dom permutations per task condition and picked maximum
GC on each permutation. The threshold value for GC spectra
at significance p < 10�6 was obtained by fitting the distribu-
tion with a gamma-distribution function and this threshold
value was used to identify significantly active directed net-
work activity among ROIs calculated in pairwise GC
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analysis. We applied conditional GC analysis to differentiate
direct and indirect connections between three nodes to ad-
dress the drawbacks of GC analyses as stated in previous
fMRI and EEG connectivity studies (Hesse et al., 2003;
Roelstraete and Rosseel, 2012). We ruled out the mediated
interactions and retained only the direct network interac-
tions. We also computed the time-domain GC values for sig-
nificantly active network directions from each participant
and performed paired t-tests to find the significant network
modulation during the task conditions in comparison to rest.

Connectivity analysis-EEG

We computed task-related activations from fMRI data.
We used the information of the brain activations into the
source modeling analysis of EEG data. As the activation
foci derived from fMRI images can be used to guide the
placement of dipole locations (Liu et al., 2006), we selected

the cortical activation loci primary motor cortex (PMC) and
SMA as reliable EEG sources. We did not consider Cb acti-
vation as a source in the EEG source modeling since Cb is a
deeper brain source. We fitted the dipoles at fMRI peak ac-
tivation locations [Talairach coordinates: (�45, �16, 48)
for PMC and (0, 2, 56) for SMA with dipole orientations
(0.2, �1.0, 0.2) and (0.1, 1.0, 0.1), respectively]. Using the
minimum norm estimate approach, one of the inverse solution
techniques, in Brain Electrical Source Analysis Research soft-
ware version 6.0 (www.besa.de), we obtained EEG source
waveforms. For this, we used single-trial EEG data from
different rhythm task blocks and obtained corresponding
single-trial source waveforms from the fitted dipoles at the
abovementioned locations and the dipole orientations. The
source signals thus obtained were used to calculate spectral
measures for the network activity analysis.

We calculated wavelet-based spectral power and paramet-
ric spectral measures: coherence and GC. The same procedures,

FIG. 1. Brain activations:
The brain activations shown
are for RFT tasks versus rest
(0-beat rhythm) (A), for 1-
beat rhythm versus rest (B),
for 2-beat rhythm versus rest
(C), and for 3-beat rhythm
versus rest (D). The color in-
tensity represents t-statistics,
and the activations are over-
laid on the MNI structural
template brain in neurologi-
cal orientation. Cb, cerebel-
lum; PMC, primary motor
cortex (pre/postcentral
gyrus); RFT, rhythmic finger
tapping; SMA, supplemen-
tary motor area. Color images
available online at
www.liebertpub.com/brain

4 ADHIKARI ET AL.

D
ow

nl
oa

de
d 

by
 W

 V
IR

G
IN

IA
 U

N
IV

 L
IB

 f
ro

m
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 0

1/
23

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



as performed in fMRI time series, were followed for the EEG
source waveforms to determine the model order that better
described the data and used for spectral calculation. The
thresholds for statistical significance p < 10�3 were com-
puted from surrogate data using permutation tests and a
gamma-function fit.

Results

Brain activations

Figure 1 shows the fMRI activation maps for the duration
when participants performed the RFT tasks: B1, B2, and B3,
and during rest (B0). The tapping task versus rest contrast
showed activations in LPMC, SMA, and RCb (Fig. 1A). B1

versus B0 contrast showed the activation in SMA, LPMC,
and RCb (Fig. 1B), whereas B2 versus B0 showed activations
in left putamen in addition to RCb and the LPMC (Fig. 1C).
Similarly, B3 versus B0 showed activation in the left putamen,
RCb, LPMC, and SMA (Fig. 1D). These activations were ini-
tially subjected to a cluster-forming threshold p < 0.001 and
cluster size, k > 10. We performed multiple comparison cor-
rection on all activation t-maps using Monte Carlo simulation
implemented in AFNI (Cox, 1996) (AFNI 3dClusterSim http://
afni.nih.gov/afni/doc/manual/3dclust.pdf) (Cox et al., 2016).
The activations that survived significance of corrected p < 0.05
are marked with asterisk ‘‘*’’, ‘‘**’’ for corrected p < 0.01,
‘‘***’’ for corrected p < 0.001 as shown in Table 1.

BOLD response

Analysis was carried out to examine how node activity
changes during finger tapping versus rest contrast, B1-B0, B2-
B0, and B3-B0. We calculated the average region-specific
beta (b) values for LPMC, RCb, and SMA during these condi-
tions in the tapping tasks. The node activities, as indicated by
b-values, were significantly higher ( p < 0.05) for B3-B0 com-
pared with B2-B0 and B1-B0 for all nodes as shown in Figure 2.
There were no significant differences in node activities when
b-values for B2-B0 were compared with b-values for B1-B0.
The details of the statistical test results are given in Table 2a.

Table 1. Brain Activations for Various Contrasts

Contrast
Brain
region

Cluster
size

Voxel t
(z-equivalent)

MNI
coordinates

x, y, z

Task>rest L PMC*** 196 8.84 (4.25) �45, �16, 52
6.89 (3.84) �30, �19, 43
6.70 (3.79) �33, �25, 58

SMA** 47 6.62 (3.77) 0, �1, 61
5.77 (3.53) 9, 2, 64

R Cb* 32 6.23 (3.66) 21, �49, �26

B1>B0 SMA*** 79 12.19 (4.76) 0, 2, 58
5.14 (3.32) 9, 5, 64

L PMC*** 195 7.84 (4.05) �33, �16, 49
6.84 (3.82) �33, �10, 55
6.23 (3.66) �48, �10, 52

R Cbn.s. 12 5.76 (3.52) 30, �64, �23

B2>B0 L Putamen* 11 7.49 (3.98) �27, �1, 1
R Cb* 11 6.85 (3.82) 3, �52, �5
L PMC* 11 6.78 (3.81) �42, �1, 58
L PMC*** 56 6.52 (3.74) �27, �22, 52

6.28 (3.67) �51, �16, 52
5.84 (3.55) �39, �25, 46

B3>B0 L Putamen** 18 9.83 (4.42) �27, �1, �2
R Cb* 15 7.66 (4.01) 3, �52, �5
L PMC*** 66 7.11 (3.89) �27, �22, 52

5.57 (3.47) �42, �13, 64
5.54 (3.46) �51, �16, 52

L SMA* 17 6.16 (3.64) �3, �1, 61

It includes information about anatomical locations, cluster sizes,
t-value (z-score), and MNI coordinates for the activations under sta-
tistical significance p < 0.001 and cluster extent k > 10. The t-map of
each contrast is corrected for multiple comparisons using Monte
Carlo simulation implemented in AFNI (Cox, 1996) (AFNI 3dClus-
terSim http://afni.nih.gov/afni/doc/manual/3dclust.pdf). The indi-
vidual voxel probability threshold is set to be 0.05.

*p < 0.05; **p < 0.01; ***p < 0.001.
B0, 0-beat rhythm (rest); B1, 1-beat rhythm; B2, 2-beat rhythm;

B3, 3-beat rhythm; Cb, cerebellum; L, left; MNI, Montreal Neuro-
logical Institute; n.s., not significant; PMC, primary motor cortex
(pre/postcentral gyrus); R, right; SMA, supplementary motor area.

FIG. 2. Comparison between contrast val-
ues: contrast values (<b>) were calculated
for (B1-B0), (B2-B0), and (B3-B0) from
LPMC, RCb, and SMA. Here B0: 0-beat
rhythm, B1: 1-beat rhythm, B2: 2-beat
rhythm, and B3: 3-beat rhythm. The error bar
represents the standard error of the mean.
LPMC, left primary motor cortex; RCb, right
cerebellum; SMA, supplementary motor area.
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Network activity

We computed the pairwise-GC spectra to assess network in-
teractions among the three nodes: LPMC, RCb, and SMA
(nodes were selected based on task versus rest contrast) for
button presses that included the time series for B1, B2, and
B3. The permutation threshold criteria were followed to
find the significant causal interaction directions (for details,
see the Materials and Methods section). The significant
causal connections among these nodes (represented schemat-
ically) are shown in Figure 3A. The interaction directions be-

tween two nodes are direct and are not mediated by the
remaining third node. The numerical values are the peak
GC values from the GC spectra and represent the strength
of the causal interactions. During RFT tasks, we found the
bidirectional causal interactions between PMC and SMA,
unidirectional causal influences from PMC and SMA to Cb.

From the GC-spectra for B0, B1, B2, and B3 of each partic-
ipant, we calculated the time-domain GC values, integrating
the entire frequency range (0.0185–0.25 Hz). When we
compared the causal influences between B1 and B0, we
found that there was a significant increase ( p < 0.05) in

Table 2. The Statistical Significance Level for Beta Contrast Value

Comparison and Power Comparison for Beat Rhythms

(a) Contrast values and their statistical test scores for different beat rhythms

Regions

<b>
p-value/t-value

B1 > B0 B2 > B0 B3 > B0

(B2 > B0) vs.
(B1 > B0)

(B3 > B0) vs.
(B2 > B0)

(B3 > B0) vs.
(B1 > B0)

PMC 2.38 2.77 3.71 0.374/0.94 0.017/3.02 0.009/3.42
R Cb 1.12 1.29 1.86 0.475/0.74 0.022/2.84 0.001/5.02
SMA 2.16 2.31 3.44 0.79/0.28 0.034/2.56 0.018/2.97

(b) Statistical test scores for power comparison for different beat rhythms

Regions

PMC SMA

B1 vs. B0 B2 vs. B0 B3 vs. B0 B1 vs. B0 B2 vs. B0 B3 vs. B0

Alpha-band p-value/t-value 0.64/0.48 0.39/–0.90 0.24/–1.27 0.74/–0.35 0.43/–0.83 0.18/–1.47
Beta-band p-value/t-value 0.34/–1.09 0.034/–2.56 0.021/�2.87 0.94/0.09 0.041/–2.44 0.033/�2.58

Bold values represent that statistical significance level, p < 0.05.

FIG. 3. Network interac-
tions: Schematic representa-
tion of significant causal
interaction directions among
three nodes: LPMC, SMA,
and RCb. The significant
causal connections for RFT
tasks (all beats), as deter-
mined by using permutation
threshold criteria ( p < 10�6),
are shown in (A) by green
line with an arrowhead; the
width of the line represents
the connection strength
(maximum GC value),
thicker the line, stronger the
causal influence. The red
stars represent the significant
increase in network interac-
tion directions ( p < 0.05)
when the causal strengths
during (B) 1-beat rhythm, (C)
2-beat rhythm, and (D) 3-beat
rhythm are compared with the
causal strengths during rest.
GC, Granger causality. Color
images available online at
www.liebertpub.com/brain

6 ADHIKARI ET AL.

D
ow

nl
oa

de
d 

by
 W

 V
IR

G
IN

IA
 U

N
IV

 L
IB

 f
ro

m
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 0

1/
23

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



causal influence from PMC to Cb (Fig. 3B). The causal influ-
ences increased significantly ( p < 0.05) from PMC to Cb and
from SMA to Cb during B2 and B3 compared with B0 (Fig. 3C,
D). Here a significant increase in causal influence is marked
with a star (*).

EEG artifact preprocessing

This study consisted of a total of 27 runs, 3 data recording
sessions per subject. Each recording session consisted of two
1-min segments for each rhythm (B0, B1, B2, and B3) and
hence it is of an 8-min length. During artifact preprocessing,
we excluded the two data segments from two subjects, a seg-
ment each for B0 and B3 for a subject and a segment for each
B1 and B2 for the next subject. The number of interpolated
electrodes varied from 1 to 12 in these 27 recording sessions,
with the mean (–standard deviation) 7 (–2).

fMRI-constrained EEG analysis

The single-trial source waveforms for fMRI-constrained
cortical sources, PMC and SMA, were used to compute the
spectral power. Considering all source waveforms from all
participants, we found spectral peaks at *10 Hz (a-range),
*16 Hz, and *26 Hz (b-range), the peak at *26 Hz had a
higher magnitude for both nodes (Fig. 4A, B) in all condi-
tions. No changes in a-band (8–12 Hz) node activities were
found for both nodes during task conditions compared to
rest (Fig. 4C). However, we found a significant decrease
( p < 0.05) in b-band (13–30 Hz) node activities during B2

and B3 compared with B0 (Fig. 4D). The statistical details
are given in Table 2b.

From the pairwise-GC spectral calculation using single-
trial source waveforms for button presses and the permuta-
tion threshold criteria as described in the Materials and
Methods section, we found bidirectional causal interactions,

FIG. 4. EEG spectral power and power differences: Upper panel shows spectral power for rest (0-beat rhythm, B0), and
finger tapping tasks (B1: 1-beat rhythm, B2: 2-beat rhythm, and B3: 3-beat rhythm) from PMC (A) and SMA (B) respectively.
Lower panel shows the average a-band (8–12 Hz) power (C) and b-band (13–30 Hz) power (D) for PMC and SMA for dif-
ferent beat rhythms. The significant difference ( p < 0.05) in power is marked with asterisk (*) during button presses in com-
parison with rest. EEG, electroencephalography. Color images available online at www.liebertpub.com/brain
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from PMC to SMA and from SMA to PMC, significant. We
calculated time-domain GC values for the entire frequency
range for our calculation here (0.12–58 Hz), a-band, b-
band, and c-band (30–58 Hz) for button presses (BP) and
rest (B0). For the entire frequency range, the causal interac-
tions from SMA to PMC and from PMC to SMA differed sig-
nificantly ( p < 0.05). There was a greater causal influence
during BP than B0 (Fig. 5A). These causal influences during

BP were significantly higher ( p < 0.05) than B0 for b-band
(Fig. 5C), but not for a-band and c-band (Fig. 5B, D). Fur-
thermore, to investigate whether the reconstructed EEG
source signals were affected by any residual volume conduc-
tion in EEG inverse source estimation, we used the procedure
of time-shifting-driven signals that were used in previous
studies (Adhikari et al., 2014; Faes et al., 2013; Lindner
et al., 2011) to evaluate potential effects of residual volume

FIG. 5. Network activity between
cortical EEG sources: The com-
parison between time-domain GC
values for no button press (B0) and
button presses (BP) obtained from
(A) the frequency range (0.12–
58 Hz), and from (B) a-band (8–
12 Hz), (C) b-band (13–30 Hz), and
(D) c-band (30–58 Hz) separately.
*p < 0.05; n.s., not significant. The
error bar stands for the standard
error of the mean.

FIG. 6. Effect of any residual
volume conduction in the source
signals: true GC (white) and that
obtained after shifting the time
points (gray). All true GC values
were found to be significantly
greater ( p < 10�6) than the corre-
sponding GC value obtained by
shifting time points. Here time
points were shifted by t = 1, 2, 3, 4,
5 points to generate surrogate time
series and to test the hypothesis that
GC would strengthen by time
shifting the driven signals if volume
conduction effects were present in
the data.
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conduction in the reconstructed source signals, to rule out the
possibility that GC patterns had anything to do with volume
conduction. The comparison between the maximum GC val-
ues of the original time series (for the reconstructed source
waveforms) and the distribution of values obtained for a
set of 50 time-shifted surrogates showed that the causal influ-
ences were not strengthened by time shifting the driven
signals during B0 and BP (Fig. 6). The directed causal influ-
ences were not the result of volume conduction during B0

and BP. Figure 6 shows the causal interactions between
SMA and PMC for beta-frequency (13–30 Hz) and the entire
frequency range (0.12–58 Hz), and these interactions were
not affected by any residual volume conduction in recon-
structed source signals.

Discussion

A flow of temporal sequence of events, motor preparation,
and actual execution of rhythmic tapping with precise timing
mechanism are required for the generation of rhythmic
movements. Previous studies on movement coordination
and rhythms have shown that a complex movement involves
a higher degree of central internal effort (Kelso et al., 1990;
Mayville et al., 1999; Rao et al., 1993; Sakai et al., 1999).
The cortical and subcortical areas involved may depend on
the specific timing relationship required between motor and
perceptual or imagery processes. Our fMRI results showed
the areas, PMC, SMA, and Cb, involved in rhythmic motor
movements and found significant unidirectional causal inter-
actions from SMA and PMC to Cb in addition to significant
bidirectional interactions between PMC and SMA during
RFT tasks. Reconstructed source signals using single-trial
EEG data from the cortical sources PMC and SMA showed
a decrease in node activity during finger tapping compared
to rest. There were significant bidirectional interactions be-
tween these nodes during RFT tasks.

Brain activations during tapping tasks

Patterns of time intervals demarcated by sensory and/or
motor events called rhythms require an element of timing.
We can create, maintain, and change an incredible number
of slow, fast, simple, or intricate movement rhythms. The
sensorimotor synchronization involved a distributed network
of brain regions for the integration of sensory stimuli to
motor planning and execution (Hardwick et al., 2013; Rao
et al., 1997; Thaut, 2006; Thaut et al., 2008). The tap versus
rest contrast showed brain activations in the left PMC, SMA,
and right Cb. Different beat rhythms (B1, B2, B3) versus rest
(B0) were correlated with activations in the PMC, SMA, the
left basal ganglia (putamen), and the right Cb. These activa-
tion regions are consistent with previous studies (Adhikari
et al., 2013; Dhamala et al., 2003; Witt et al., 2008). The
SMA and motor regions are responsible for planning, higher
order organization, and preparation of motor movements,
whereas the primary motor area is responsible for the execu-
tion of the task (Cunnington et al., 2003; Hardwick et al.,
2013; Rao et al., 1993; Roland, 1985; Samuel et al., 1998;
Shibasaki and Hallett, 2006). The contralateral pre/postcen-
tral gyrus activations are concerned with the initial cortical
processing of tactile and proprioceptive information, be-
lieved to contribute to the temporal organization of motor be-
havior (Halsband et al., 1993; Truelle et al., 1995), and found

to show pronounced activity with complexity of movement
rhythms. Similar results were obtained in several other stud-
ies (Gerloff et al., 1998; Lang et al., 1990) and indicated that
the premotor and supplementary motor activity is related di-
rectly to the degree to which a movement pattern must be
planned. Rhythm not only activates motor areas but also
helps in creating rapid motor synchronization to an external
rhythmic cue in persons with and without neurological dis-
ability (Thaut et al., 1999a).

The basal ganglia, Cb, and various parts of the cortex have
been shown to be involved in perceiving and generating sim-
ple to complex movement rhythms. The basal ganglia have
been proposed to act as an internal clock of the brain that
generates internal timing representations (Chauvigne et al.,
2014) and related to sequencing aspects of rhythmic motor
movements (Jueptner and Weiller, 1998; Thaut et al., 2008),
whereas the Cb performs more complex timing processing,
such as encoding polyrhythmic stimuli (Thaut et al., 2008),
establishing the duration of discrete stimuli (Ivry and Spencer,
2004; Teki et al., 2011), or performing a correction of timing
errors led by basic processing in basal ganglia (Kung et al.,
2013; Teki et al., 2011). Aged subjects required more brain net-
work activity to perform movement automatically at the
same level as young subjects; age subjects not only showed
greater activity in the bilateral anterior Cb, premotor area,
parietal cortex, left prefrontal cortex, anterior cingulate, cau-
date nucleus, and thalamus but also recruited more areas, in-
cluding the pre-SMA and bilateral posterior Cb compared to
young subjects (Wu et al., 2005).

The cortical sensorimotor areas have been related to tempo-
ral complexity or the fine tuning of rhythms (Dhamala et al.,
2003) and the sensorimotor integration for optimizing move-
ments (Ivry, 1996; Jueptner and Weiller, 1998; Thaut et al.,
2008). Putamen activations found for B2 and B3 (Fig. 1C, D)
corresponding to the regular signal increased with increasing
movement complexity (Lehericy et al., 2006). Previous stud-
ies on functional connectivity indicated that the putamen
preferentially receives inputs from motor, sensory, and pre-
motor cortices (Brooks, 1995; Graybiel et al., 1994) and is
the projection site of the cortical inputs into the basal ganglia
and its activity is mainly movement related instead of cogni-
tion related (Kraft et al., 2007). The cortico-basal ganglia and
cortico-cerebellar circuits are involved not only in rhythmic
movement generation but also in various aspects of rhythmic
perception and learning (Ramnani and Passingham, 2001).
Damage to these circuits impairs timing abilities (Artieda
et al., 1992; Halsband et al., 1993; Mangels et al., 1998;
Molinari et al., 2003), further supporting their role in rhythm
perception and production (Chauvigne et al., 2014). These
impairments are associated with a wide variety of neurolog-
ical disorders (Allman and Meck, 2012; Hardy and Lagasse,
2013; Turgeon et al., 2012) and in abnormal sensorimotor in-
tegration in various movement disorders (Patel et al., 2014).

We found the increase in BOLD signals and decrease in
alpha and beta power when subjects performed RFT tasks
in comparison to rest condition. Task-induced increases of
BOLD signal were observed at PMC, SMA, and Cb
(Fig. 2) and decreases of EEG amplitude in alpha and beta
bands (Fig. 4) were found at both PMC and SMA. These re-
sults are in good agreement with previous findings that
showed an inverse functional coupling between task-induced
changes of BOLD and low-frequency EEG signals (Yuan

FINGER TAPPING SIMULTANEOUS FMRI-EEG STUDY 9

D
ow

nl
oa

de
d 

by
 W

 V
IR

G
IN

IA
 U

N
IV

 L
IB

 f
ro

m
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 0

1/
23

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



et al., 2010). The decrease in alpha/beta activity with the
complexity of the movement rhythms may be due to a de-
crease in the synchrony of the underlying neural population.
The degree of desynchronization may be quantitatively re-
lated with an increase in neuronal activity, as reflected in
the increased BOLD signal. The higher the alpha and beta
desynchronization (Fig. 4), the higher is the local cortical ac-
tivation (Fig. 2) found during higher beat rhythms.

Network activity

The brain activation observed in our study: PMC, SMA,
Cb, premotor cortex, and putamen were consistently found
in both motor imagery and motor execution tasks (Bajaj
et al., 2015; Grefkes et al., 2008; Kasess et al., 2008). The
core motor areas: PMC, SMA, premotor cortex are known
to be connected anatomically (Pool et al., 2103; Walsh
et al., 2008) and involved in planning, initiation, and execu-
tion of motor commands. Significant bidirectional causal in-
teractions that we found between PMC and SMA during RFT
tasks [from BOLD signal (Fig. 3) and from constructed EEG
source signals using single-trial EEG (Fig. 5)] in our study
have also been reported in several studies within these
areas as well as with other areas such as basal ganglia, puta-
men, cerebellum, inferior and superior parietal lobule, and
other somatosensory areas (Gao et al., 2011; Grefkes et al.,
2008; Rehme et al., 2011; Walsh et al., 2008). We found
that the RFT task is characterized by network interactions
among PMC, SMA, and Cb. The Cb received significant uni-
directional causal influences from cortical regions during
RFT task and causal influences were found modulated with
the complexity of rhythms, which may reflect the role of
Cb in rhythm-information processing (D’Angelo and De
Zeeuw, 2009; Salmi et al., 2010; Ziemus et al., 2007) or
for the tasks involving temporal representations, situations
that involved event timing (Ivry et al., 2002).

Subcortical brain areas such as putamen, globus pallidus,
substantia nigra, and subthalamic nuclei and cortical motor
areas such as the premotor cortex, PMC, the postparietal cor-
tex, S1, and SMA participate in the control of motor function
(Saunders et al., 2015). Impairment of motor function may
lead to clinically heterogeneous signs and symptoms, observ-
able in several clinically distinct neurological diseases and
mental disorders such as schizophrenia (Hirjak et al.,
2015). Abnormal neural activity in pre- and postcentral, infe-
rior frontal, parietal, thalamic, striatal, and cerebellar structures
is the indication of neurological soft signs in schizophrenia
(Hirjak et al., 2015). Also, there are reports of abnormal func-
tional activation in the cerebellum, thalamus, and cortex in
patients with schizophrenia (Andreasen et al., 1996).

Our results, bidirectional interactions between SMA and
PMC for the fMRI BOLD signal and reconstructed single-
trial source, are consistent with the results presented in a si-
multaneous fNIRS, fMRI, and EEG study (Anwar et al.,
2016). They have estimated the effective connectivity
within cortico-cortical sensorimotor network ROIs; sensori-
motor cortex (SMC), PMC, and dorsolateral prefrontal cor-
tex (DLPFC) during finger movement tasks using fMRI
(BOLD), fNIRS (oxygenated and deoxygenated hemoglo-
bin), and EEG (scalp and source) signals. All motor tasks
showed a significant bidirectional information flow among
the SMC, PMC, and DLPFC, only the source level EEG

GC values were significantly greater forward than the back-
ward information flow among these ROIs. A study using
MEG together with the analysis tool Dynamic Imaging of
Coherent Sources (Gross et al., 2001) investigated the oscil-
latory network associated with simple auditory paced finger-
taps (Pollok et al., 2005) and showed that the task execution
was associated with a cerebello-thalamo-cortical network
comprising cerebellum, thalamus, PMC, SMA, and superior
temporal sulcus corresponding to the auditory cortex (Pollok
et al., 2006). Significant increase in bidirectional beta-band
interactions between PMC and SMA during button presses
may provide information about the sensorimotor integration,
including movement initiation, execution (Kuo et al., 2014),
and serve as a functional link between different motor re-
gions: PMC (Reimer and Hatsopoulos, 2010), SMA (Hosaka
et al., 2016), and somatosensory cortex (Lebedev and Nelson,
1995). No significant changes in the alpha and the gamma net-
work oscillations were found in going from simple to com-
plex rhythms, although attenuation of the alpha power can
be observed during preparation and/or execution of volun-
tary movements and an elevation of the gamma power over
motor regions during movements of finger or other body
parts (Xiao and Ding, 2015).

In summary, this simultaneous fMRI-EEG study shows
that the complexity of motor rhythms is associated with net-
work activity increases and changes in beta (13–30 Hz) band
network oscillations. The analysis of the fMRI BOLD signals
found brain activations in PMC, SMA, and Cb during finger
movements and the network interactions were bidirectional be-
tween PMC and SMA and unidirectional to Cb from PMC and
SMA. The causal interactions from PMC and SMA to Cb were
modulated by the complexity of rhythm. The reconstructed
single-trial EEG source signals from PMC and SMA showed
the decrease in beta-power during 2-beat and 3-beat rhythms
in comparison with 0-beat rhythm, but an increase in bidirec-
tional network interactions (beta-band) between them during
finger-tapping tasks in comparison to the rest. There were no
significant changes in the alpha (8–12 Hz) and gamma (30–
58 Hz) network oscillations in going from simple to complex
rhythms. The current knowledge on motor system circuits
and network interactions among motor areas during RFT
task could be beneficial for mapping certain clinical symp-
tom expressions onto distinct motor pathways.
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