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Many real-world examples of distributed oscillators involve not only time delays but also attractive (positive)
and repulsive (negative) influences in their network interactions. Here, considering such examples, we generalize
the Kuramoto model of globally coupled identical oscillators with time-delayed positive and negative couplings
to explore the effects of such couplings in collective phase synchronization. We analytically derive the exact
boundaries for stable incoherent and coherent states in terms of the system parameters allowing us to examine
the interplay of symmetric and asymmetric time delays and couplings in collective synchronization. Dependent
on these parameters, regions of coherent, incoherent, and mixed (coherent, partially coherent, incoherent) states
with hysteresis are possible. The region of stability for incoherent states decreases with increasing time delay in
all cases and it overall gets reduced in the presence of a time delay in repulsive coupling. The time-delay effects
for instability can become more significant at the delay values that are about half an oscillation period length,
or its multiples in the case of positive time-delay couplings, and is about a full period or its multiples in case of
negative delayed couplings. The mixed state region shows multistability among fully coherent, fully incoherent,
and partially coherent (clustered) states. Partially coherent or clustered states occur near the instability-stability
boundaries and can show quasiperiodic and nonstationary behaviors. We discuss the implications of the model
and the results for natural systems, particularly neuronal network systems in the brain.

DOI: 10.1103/PhysRevE.98.032221

I. INTRODUCTION

The Kuramoto model [1], originally formulated to sim-
plify Winfree’s biological oscillator model for the circadian
rhythms of living systems [2], represents an analytically
tractable model to study collective synchronization in large
systems of coupled nonlinear oscillators. Since its concep-
tion, the Kuramoto model has been generalized to explain
collective dynamical behaviors in many natural and techno-
logical systems of coupled nonlinear oscillators often with
various coupling scenarios [3–6]. As nature is replete with
beautiful complexities such as self-organized critical phenom-
ena [7] arising from opposing forces, the interplay of positive-
negative time-delayed interactions in the Kuramoto model
of oscillators can also be expected to show rich dynamical
behaviors yet to be investigated.

The generalizations of the Kuramoto model previously an-
alyzed include coupling scenarios with separate time-delayed
interactions, and positive as well as negative coupling. In an
outstanding analytical work, Yeung and Strogatz [8] consid-
ered time delay in a mean-field sinusoidal coupling of the
Kuramoto model and derived exact formulas for the stability
boundaries of the incoherent and synchronized states as a
functional of the delay in a special case where the oscillators
were identical. Later, Earl and Strogatz [9] extended the
analysis to a variety of coupling topologies (regular, small-
world, and random network graphs) to find that the same
stability criterion held true as for the mean-field case. In
another more recent study, Hong and Strogatz [10,11] studied
the Kuramoto model with positive and negative coupling

parameters (without time delay) and reported a variety of
dynamical behaviors including fully synchronized, partially
synchronized, desynchronized, and traveling states. Qui and
colleagues [12] recently discovered a new nonstationary state
(named Bellerophone) along with a synchronized state in
the model with positive and negative coupling. In networks
of globally coupled Kuramoto oscillators with attractive and
repulsive couplings (similar to networks of excitatory and
inhibitory neurons), Maistrenko and colleagues discovered
solitary states as a dynamical mechanism for desynchro-
nization [13]. Petkoski and colleagues recently analytically
studied the regions of stability for phase synchronization in
networks of Kuramoto oscillators with bimodally distributed
time delays in positive coupling [14]. However, the dynamics
of the Kuramoto model with combined time-delayed interac-
tions and positive-negative (attractive-repulsive or excitatory-
inhibitory) couplings have largely remained unexplored de-
spite their relevance to many natural systems, such as biolog-
ical, physical, chemical, and social networks.

Interaction time delays and excitation-inhibition (E-I) are
usually characteristics of spatially distributed, self-organized
systems, such as neurons in the brain in which the E-I balance
is required to maintain normal temporal and spatial functional
organization in healthy cognitive functions and behaviors
[15–19]. Networks of coupled excitatory and inhibitory
neurons can exhibit a complex dynamical behaviors including
synchronization, multiclustered solutions, and oscillator
death [20]. E-I couplings in Belousov-Zhabotinsky can lead to
a large number of spatiotemporal patterns, simple to complex
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behaviors [21]. In social networks of conformists (dynamical
units with positive coupling) and contrarians (those with
negative coupling) also, various collective behaviors are
possible [11,22,23]. Interactions in spatially distributed
oscillator network systems are not generally instantaneous.
On the contrary, finite speed of signal transmission over a
distance gives rise to a finite time delay. For example, signal
transmission time delays are inherent in networks of neurons
in the brain. While the chemical synaptic time delays are small
(∼2 ms), the axonal conduction delays, which depend on the
distance between neurons in the brain, can reach up to tens of
milliseconds [24]. Time delays comparable to timescales of
neuronal oscillations are known to have significant effects in
the collective (ensemble) activity of neurons [24–26]. Time
delays in networks of coupled inhibitory neurons can induce
a variety of phase-coherent dynamic behaviors, including
completely coherent, partially coherent, and periodic pat-
terns [27]. Time delays in networks with E-I can be expected
to induce a variety of collective dynamical behaviors, such as
coherent, partially coherent, and multistable states.

In this work, we analyze a generalized Kuramoto model of
nonlinear oscillators with time-delayed positive and negative
couplings for stability of coherent and incoherent states, and
derive the exact analytical solutions to define the parameter
boundaries for these states. As a general result, we come to
show that fully coherent, incoherent states and mixed (coher-
ent, incoherent, and clustered) states are possible, and that
the system commonly displays these states and other complex
behaviors in cases of symmetric and asymmetric time delays
in positive and negative couplings.

II. METHODS AND RESULTS

We start with the following generalized Kuramoto model
of N oscillators globally connected with time-delayed positive
and negative couplings:

θ̇i (t ) = ω0 + k1

N1

N1∑
j=1

f [θj (t − τji ) − θi (t )]

+ k2

N2

N∑
j=N1+1

f [θj (t − τji ) − θi (t )]. (1)

Here the coupled system consists of N1 and N2 numbers
of positively and negatively coupled oscillators. The total
number is N = N1 + N2, and k1 + k2 = (1 − c)k. k1 = k > 0
is a positive coupling strength, k2 < 0 is a negative coupling
strength, and c = −k2/k = |k2|/k is the coupling ratio. θi (t )
is the phase of the ith oscillator, θ̇i (t ) its derivative, and
each oscillator has the same natural frequency w0. f is a
general coupling function, which we replace with a sinusoidal
function in our examples below. τji is the overall time delay
for a signal to go from oscillator j to oscillator i, which
includes internal node-level intrinsic processing time plus the
time for the signal transfer along the pathway. Here we further
assign τji to be τ1 for the time delay associated with positive
coupling and τ2 for the time delay with negative coupling.
Figure 1 illustrates with a five-oscillator network the type of
coupled oscillator system described by Eq. (1). Notice that

FIG. 1. A schematic of a network of all-to-all coupled oscillators
(filled circles) with time-delayed positive and negative interactions
(lines with arrows). Equation (1) represents such a network with
infinitely large number of oscillators (N1 → ∞ and N2 → ∞, the
thermodynamic limit). Here, we use only five oscillators for a simpler
illustration of the network structure. Red filled circles represent
the network nodes that send positive couplings (red edges) to all
others, and blue circles represent those that send negative couplings
(blue edges). The time delay from a red node to a blue node is τ1

and the other way around is τ2. In our analysis of the generalized
Kuramoto model [Eq. (1)], we consider the cases of symmetric
(τ1 = τ2) and asymmetric (τ1 �= τ2, one of them being zero) time
delays between oscillators. The effect of self-coupling (dashed line)
becomes negligible in the thermodynamic limit.

this network structure with positive and negative couplings
is different from the one used in [10] but is consistent with
the notion of networks of excitatory and inhibitory neurons
studied in neuroscience. The overall time delays in the neu-
ronal circuits in the brain depend on intrinsic processing and
axonal conduction time, which can be different for excitatory
and inhibitory neurons [28]. Below, we consider the cases of
symmetric (τji = τij ) and asymmetric (τji �= τij ) time delays
between positively and negatively coupled oscillators and
explore the interplay of the parameters (k, c, τ1, and τ2) in
the emergence of stable coherent states.

The rest of the paper is organized as follows: (a) we ana-
lyze the stability of a completely coherent state and derive
the boundary curves for the coherent state, (b) we analyze
the stability of a completely incoherent state and derive the
boundary curves for the incoherent state. In each case, we
consider the following scenarios of delays: (i) τ1 = τ2 = τ ,
and (ii) τ1 = τ > 0 and τ2 = 0, (iii) τ1 = 0 and τ2 = τ > 0.
For the first case (a), we analyzed the time evolution of a
perturbation to a synchronized state. For the second case (b),
we linearize the continuity equation around the incoherent
state [ρ(θ, ω, t ) = 1/2π ] describing the time evolution of
instantaneous phase distribution ρ(θ, ω, t ) on a unit circle,
and analyze the effect of a perturbation to the incoherent state.
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A. Stability of coherent state

We assume the system reaches a complete synchronized
state described by the following equation:

θi (t ) = �t. (2)

The collective frequency � is given by

� = ω0 + k1f (−�τ1) + k2f (−�τ2). (3)

Now we add a small perturbation term on (2):

θi (t ) = �t + εφi (t ), (4)

where 0 < ε � 1. Now, if we define �i (t ) := φi (t ) − φ1(t ),

�̇i (t ) = − k1

N1
f ′(−�τ1)

N1∑
j=1

�i (t )

− k2

N2
f ′(−�τ2)

N∑
j=N1+1

�i (t )

= −[k1f
′(−�τ1) + k2f

′(−�τ2)]�i (t ). (5)

One of the stability requirements for phase synchronization
is that none of the oscillators leave the synchronous clus-
ter [29]. For that, �i (t ) needs to decay to zero instead of
diverging to infinity. Hence,

k1f
′(−�τ1) + k2f

′(−�τ2) > 0. (6)

When (6) is satisfied ∀i = 1, 2, 3, . . . N, φi (t ) exponen-
tially converges to the same function φ(t ). Thus, φ(t ) satisfies
the following time-delay equation:

φ̇(t ) = k1f
′(−�τ1)[φ(t − τ1) − φ(t )]

+ k2f
′(−�τ2)[φ(t − τ2) − φ(t )]. (7)

If we let τ1 = τ2 = τ for a synchronization state, we have

(1 − c)f ′(−�τ ) > 0,

φ̇(t ) = (1 − c)kf ′(−�τ )[φ(t − τ ) − φ(t )]. (8)

With φ(t ) = eλt to find the characteristic function, we have

λ = (1 − c)kf ′(−�τ )(e−λτ − 1). (9)

Another stability requirement for phase synchronization is
that the angular speed � be stably uniform [29]. For this,
the real part of each eigenvalue needs to be negative. All
the eigenvalues of this characteristic function have negative
real parts if and only if (1 − c)kτf ′(�τ ) > −1, which is
already included in Eq. (8). Hence, if Eq. (8) is satisfied, the
homogeneous rotation is guaranteed.

We now let the general coupling function to be a sinusoidal,
f (θ ) = sin(θ ), for τ1 = τ2 = τ and we arrive at the following
two cases: (i) if 1 − c > 0, then cos(�τ ) > 0, and (ii) if 1 −
c < 0, then cos(�τ ) < 0.

We let T = 2π
ω0

, y = k
ω0

and arrive at the solutions for the
boundary curves of the unstable coherent states in two cases:
(i) when 1 − c > 0, we have

4n + 1

4[1 − (1 − c)y]
<

τ

T
<

4n + 3

4[1 + (1 − c)y]
, (10)

(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.5

0

0.5

1 Multistable
Unstable

(b) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2
Multistable
Unstable

0 0.5 1c
-4
-2
0

ln
(A

)

(c) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3
Multistable
Unstable

1 2 3c
-6
-5
-4
-3

ln
(A

)

FIG. 2. Regions of unstable coherent and stable incoherent states
(red color or darker shade), stable coherent and incoherent states
(cyan color or lighter shade), and stable coherent state (unshaded or
white) as a function of coupling strength and time delay in cases
of symmetric time delays (τ1 = τ2) (a), and asymmetric time delays
(τ1 �= τ2) and c = 0.5 in (b), and c = 2.0 in (c). Here, the region of
the incoherent state becomes progressively smaller with increasing
time delay for all cases: unstable area decreases as 1/τ . In the case
of symmetric time delays [shown in (a)], a stable coherent state exists
for dominant negative coupling (coupling ratio, c > 1). In the cases
of asymmetric time delays, a stable coherent state does not exist for
dominant negative coupling (c > 1) when time delay is zero in the
negative coupling [shown in (b)], and a time delay in the negative
coupling and zero delay in the positive coupling [as shown in (c)]
further reduces the region of stable incoherent state. The time-delay
effects become more significant at delays nearly equal to the half
oscillation period or its multiples (locations of boundary peaks in (b))
for time delays present only in positive couplings or at delays equal
to a full period or its multiples in case of time delays only present
in negative couplings (c). The cyan color (lighter) shaded region can
exhibit stable coherent, incoherent, and clustered states, collectively
referred to as mixed or multistable states. The insets in (b, c) show
how the unstable area (red) [A ≈ 1

2 W (c)H (c) for n = 1] varies with
the coupling ratio c.

and 0 < y < 1
2(1−c)(2n+1) , and (ii) when 1 − c < 0, we have

4n − 1

4[1 + (1 − c)y]
<

τ

T
<

4n + 1

4[1 − (1 − c)y]
, (11)

and 0 < y < 1
4n(c−1) . We use (10) and (11) to draw the

boundary curves and areas for unstable synchronized states,
as shown in the red color shades of Fig. 2(a).
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We now consider f (θ ) = sin(θ ), τ1 = τ > 0, τ2 = 0, and
(6) becomes

f ′(−�τ ) − cf ′(0) > 0. (12)

According to (12),

cos(�τ ) − c > 0 (13)

is required to have a stable solution. This solution (13) implies
that when τ1 = τ > 0, τ2 = 0, in case of a stronger negative
coupling (c > 1), a stable coherent state does not exist. When
cos(�τ ) − c > 0, ∀i = 1, 2, . . . N : φi (t ) exponentially con-
verges to the same φ(t ), φ(t ) and then satisfies the following
equation:

φ̇(t ) = k cos(�τ )[φ(t − τ ) − φ(t )].

Then, for uniform rotation, all eigenvalues need to have
negative real parts. The characteristic function thus satisfies

λ = k cos(�τ )(e−λτ − 1). (14)

It is easy to show that for any k > 0 and cos(�τ ) > c,
for all λ �= 0, Re(λ) < 0. Therefore, the synchronized state is
always linearly stable when (13) is satisfied. Whenever c � 1,
we do not have a stable coherent state. Taking x = τ

T
, y =

k
ω0

, T = 2π
ω0

, when 0 < c < 1, the coherent state is unstable if
and only if τ satisfies following inequality:

2nπ + arccos c

2π (1 − √
1 − c2y)

<
τ

T
<

2(n + 1)π − arccos c

2π (1 + √
1 − c2y)

. (15)

Here, the width and height of the unstable coherent area in
nth period are given as follows:

W (c) = 1

π
(π − arccos c),

H (c) = π − arccos c

(2n + 1)π
√

1 − c2
. (16)

We use (15) to draw the boundary curves and areas for this
unstable coherent state, as shown with red color shade in
Fig. 2(b).

Now we consider the stability of the coherent state for
τ1 = 0, τ2 = τ > 0. For this case, Eq. (6) yields cos(�τ ) < 1

c
.

Equation (7) becomes

φ̇(t ) = −ck cos(�τ )[φ(t − τ ) − φ(t )].

The corresponding eigenfunction satisfies

λ = −ck cos(�τ )(e−λτ − 1). (17)

The eigenvalues for this function have all negative real part if
and only if

cos(�τ ) <
1

ckτ
. (18)

Thus we find that a stable coherent state can exist in this case
if and only if

cos(�τ ) < min

(
1

c
,

1

ckτ

)
. (19)

The coherent state will become unstable within the following
boundaries:

kτ
√

c2 − 1 − arccos
1

c
< ωτ − 2nπ

< arccos
1

c
− kτ

√
c2 − 1. (20)

Setting x = τ
T

and y = k
ω0

, we have x <
arccos 1

c

2π (1+√
c2−1y)

for

n = 0 and

2nπ − arccos 1
c

2π (1 − √
c2 − 1y)

< x <
2nπ + arccos 1

c

2π (1 + √
c2 − 1y)

, (21)

where n = 1, 2, 3, 4, . . .. In this case, the width and height
of the unstable coherent area in the nth period are given as
follows:

W (c) = 1

π
arccos

1

c
,

H (c) = arccos 1
c

2nπ
√

c2 − 1
. (22)

We use (21) to draw the boundary curves and areas for this
unstable coherent state, as shown with red color shade in
Fig. 2(c).

B. Stability of the incoherent state

We now approach the stability of the incoherent state, from
Eq. (1), by considering the mean field of positive oscillators
and the mean field of negative oscillators in the thermody-
namic limit of N being infinitely large:

r1e
iφ1 = 1

N1

N1∑
j=1

eiθj ,

r2e
iφ2 = 1

N2

N1+N2=N∑
j=N1+1

eiθj . (23)

The conditional probability density function ρ(θ, ω, t ) sat-
isfies ∫ 2π

0
ρ(θ, ω, t )dθ = 1. (24)

For the complete incoherent state,

ρ(θ, ω, t ) = 1

2π
. (25)

For ∀ i = 1, 2, 3, . . . N ,

r1e
i[φ1(t−τ1 )−θi (t )] = 1

N1

N1∑
j=1

ei[θj (t−τ1 )−θi (t )]. (26)

Similarly,

r2e
i[φ2(t−τ2 )−θi (t )] = 1

N2

N∑
j=N1+1

ei[θj (t−τ2 )−θi (t )]. (27)

Considering the imaginary part of (26) and (27), we
can transfer the dynamical equation in the mean-field form
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as

θ̇i (t ) = ωi + k1r1 sin[θj (t − τ1) − θi (t )]

+ k2r2 sin[θj (t − τ2) − θi (t )]. (28)

The equation with a perturbation to the incoherent state is then

ρ(θ, ω, t ) = 1

2π
+ εη(θ, ω, t ), (29)

with ε � 1. Here η(θ, ω, τ ) can be expanded into the follow-
ing Fourier series:

η(θ, ω, t ) = c(ω, t )eiθ + c∗(ω, t )e−iθ + η⊥(θ, ω, t ), (30)

where η⊥ are higher Fourier harmonics. We now look for a
type of solution of the form

c(ω, t ) = b(ω)eλt , (31)

λb(ω) = −iωb(ω) + k1e
−λτ1

2

∫ ∞

−∞
b(v)g(v)dv

+ k2e
−λτ2

2

∫ ∞

−∞
b(v)g(v)dv. (32)

For identical frequencies, ωi = ω0, ∀i = 1, 2, . . . N,

g(ω) = δ(ω − ω0), δ is the Dirac δ function. The eigenvalue
λ satisfies the following equation:

λ + iω0 = 1
2 (k1e

−λτ1 + k2e
−λτ2 ). (33)

When τ1 = τ2 = τ, k1 = k > 0, k2 = −ck < 0, c > 0 is a
constant,

(1 − c)k = 2(λ + iω0)eλτ . (34)

At a critical (bifurcation) point Kc, the eigenvalue λ passes
through the imaginary axis λ = Ri, where R is real number.

From the equation above, 2(λ + iω0)eλτ = 2i(R +
ω0)[cos(Rτ ) + i sin(Rτ )] has to be a real value. Hence,
cos(Rτ ) = 0. If we take Rτ = (−m + 1

2 )π with m ∈ Z,
we have (1 − c)k = 2(−1)m−1(R + ω0) and 2ω0τ + (−1)m

(1 − c)kτ = −2Rτ = 2(m − 1
2 )π = (2m − 1)π . Taking

m = 2n + 1 odd positive integers, we get one boundary for τ :

τc1 = (4n + 1)π

2ω0 − (1 − c)k
. (35)

If we take m = 2n or m = 2(n + 1) even positive integers, we
get other boundaries for τ :

τc2 = (4n − 1)π

2ω0 + (1 − c)k
, (36)

τc3 = (4n + 3)π

2ω0 + (1 − c)k
. (37)

Letting T = 2π
ω0

, y = k
ω0

, for (1 − c)k = K > 0 and τc1 <

τ < τc3, we have the stable incoherent state within:

4n + 1

4(1 − (1−c)y
2 )

<
τ

T
<

4n + 3

4(1 + (1−c)y
2 )

. (38)

For (1 − c)k = K < 0, τc2 < τ < τc1, we have the stable
incoherent state within:

4n − 1

4(1 + (1−c)y
2 )

<
τ

T
<

4n + 1

4(1 − (1−c)y
2 )

. (39)

We now use Eqs. (38) and (39) to draw the boundary
curves and areas for this unstable incoherent state, as shown
with cyan color (light) shade in Fig. 2(a). For τ1 = τ >

0, τ2 = 0, the eigenvalue λ has to satisfy the following equa-
tion:

λ + iω0 = 1
2 (k1e

−λτ + k2). (40)

If c � 1, let λ = α + iR, α,R be real,

k[e−ατ cos(Rτ ) − c] = 2α. (41)

It is easy to see that when c > 1, (41) requires α < 0,
while when c = 1 and α � 0, then the only possibility to
satisfy (41) is α = R = 0. So the incoherent state is always
neutrally stable when c � 1. An unstable incoherent state only
possibly exists for 0 < c < 1. At a bifurcation point, when
λ = Ri, R is real. Substituting it to (40),

[2R + 2ω0 + k sin(τR)]i = k[cos(τR) − c]. (42)

(a)

(d)

(b)

(e)

(c)

(f)

FIG. 3. Examples of incoherent (a, b, c) and coherent (d, e, f)
states in cases of symmetric [first column (a, d)] and asymmetric
delays [second (b, e) and third (c, f) columns]. The time delay and
coupling strength [x, y] coordinates selected from Figs. 2(a)–2(c) for
these examples are [0.5, 0.95] for (a), [0.5, 1.025] for (d) [symmetric
case from Fig. 2(a)], [0.5, 1.4] for (b), [0.5, 1.6] for (e), [1, 0.16]
for (c), [1, 0.22] for (f) [asymmetric cases from Figs. 2(b) and 2(c)].
Here, time-delayed positively and negative coupled phase oscillators
are depicted with red plus signs and tiny blue circles, respectively,
going around in a big unit circle. The first row shows the asymptotic
unsynchronized phase positions of the oscillators from randomly
dispersed initial conditions along the circle at coupling strengths
and time delays selected from the multistable (cyan color shaded)
regions of Figs. 2(a)–2(c). The state of the system in the multistable
region depends on the initial conditions: random initial conditions
always end up in incoherent states, clustered initial conditions can
lead to partially coherent states, and a single cluster initial condition
leads to a coherent state. The second row shows that the system even
with random initial conditions can transition to coherent states as the
coupling strengths are increased out of these multistable regions in
all cases of delays (across columns).
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The above equation is satisfied if and only if cos(τR) =
c and k sin(τR) = −2(R + ω0), τR = −2mπ ± arccos c, m

are integers, and sin(τR) = ±√
1 − c2, k = ∓ 2(R+ω0 )√

1−c2 .
If we take m = n and τR = −2nπ − arccos c, we get the

left boundary for ω0τ as

ω0τlc = 2nπ + arccos c + 1
2kτ

√
1 − c2. (43)

Similarly, if take m = n + 1 and τR = −2nπ + arccos c, we
get the right boundary for ω0τ as

ω0τrc = 2(n + 1)π − arccos c − 1
2kτ

√
1 − c2. (44)

The incoherent state is stable if and only if ω0τlc < ω0τ <

ω0τrc. If we make y = k
ω0

, we have

2nπ + arccos c

2π (1 −
√

1−c2y

2 )
<

τ

T
<

2(n + 1)π − arccos c

2π (1 +
√

1−c2y

2 )
. (45)

We use (45) to draw the boundary curves and areas for this
unstable incoherent state, as shown with cyan color (light)
shade in Fig. 2(b). When τ1 = 0, τ2 = τ > 0, we have the
following characteristic equation of eigenvalue λ:

λ + iω0 = k

2
(1 − ce−λτ ). (46)

For λ = iR at the bifurcation point along the imaginary axis
with real R, we have

(R + ω0)i = k

2
[1 − c cos(τR) + ic sin(τR)]. (47)

This equation implies 1 − c cos(τR) = 0 and R + ω0 =
kc
2 sin(τR). When τR = −2nπ + arccos 1

c
, sin τR =

√
c2−1
c

,
these equations provide one boundary of τlc:

ω0τlc = 2nπ − arccos
1

c
+ kτ

√
c2 − 1

2
. (48)

Similarly, when τR = −2nπ − arccos 1
c
, sin τR = −

√
c2−1
c

,
we have another boundary of τrc:

ω0τrc = 2nπ + arccos
1

c
− kτ

√
c2 − 1

2
. (49)

When the incoherent state is stable, τ lies between these two
boundaries τlc and τrc. Thus we have

2nπ − arccos
1

c
+ kτ

√
c2 − 1

2
< ω0τ

< 2nπ + arccos
1

c
− kτ

√
c2 − 1

2
. (50)

With x = τ
T

and y = k
ω0

, we have when n = 0, x <

arccos 1
c

2π (1+
√

c2−1y

2 )
and for n = 1, 2, 3, . . .,

2nπ − arccos 1
c

2π (1 −
√

c2−1y

2 )
< x <

2nπ + arccos 1
c

2π (1 +
√

c2−1y

2 )
. (51)

We use (51) to draw the boundary curves and areas for this
unstable incoherent state, as shown with cyan color (light)
shade in Fig. 2(c).

FIG. 4. Example of a clustered state in the multistable region at [x = 0.5, y = 0.825] from Fig. 2(a) and its temporal dynamics. (a) Here
the system starts with clustered initial conditions (shown with black + signs and tiny black circles) from four quadrants of a big circle and
ends up in four clusters (shown with red + signs and tiny blue circles), where + refers to an oscillator that sends a time-delayed positive
coupling to others, and ◦ the one that sends time-delayed negative coupling. The final state is a cluster state, as also seen in phase distribution
P (θ ) of the final state (d). The temporal behaviors of the system are nonstationary (with time-varying order parameter [r (t ) = |Z(t )|, where
Z(t ) = ∑N

j exp(iθj (t ))] as plotted in (b, c)] and the trajectory of Xi (t ) = cos(θi (t )) resembles quasiperiodic orbit (b, e) with multifrequency
power spectra of X(t ) (f).
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FIG. 5. Abrupt transition to synchrony, hysteresis, and com-
plex temporal behavior. Here, we show an example [for the case
(τ1 = 0.5, τ2 = 0, c = 0.5) of Fig. 2(b)] of abrupt (first-order-like)
transitions to synchrony with order parameter [r = 〈|Z|〉, where
Z(t ) = ∑N

j exp(iθj (t )), 〈.〉 = time average] in the forward (blue)
and backward (green) directions of changing coupling strength (k).
The presence of two (red and cyan shaded) regions in Figs. 2(a)–
2(c) implies that there are hysteresis effects. Near the transition to
synchrony (for example, at k = 9 for the forward direction), the
system starting with random initial conditions shows nonstationary
behavior and the trajectory resembles a quasiperiodic orbit (the
trajectory of the complex order parameter shown in the inset).

C. Numerical results

Finally, we numerically verify all these analytical results
of Figs. 2(a)–2(c). The numerical analysis also uncovers
quasiperiodic and nonstationary collective behaviors in the
multistable region. In Fig. 3, we show some examples of
incoherent and coherent states from multistable and stable
regions. In Fig. 4, we show an example of partially coherent or
cluster state from the system with clustered initial conditions.
The temporal behavior of the system in this cluster state is
nonstationary and the trajectory resembles a quasiperiodic
orbit with multifrequency spectra. In Fig. 5, we show that the
system can undergo abrupt transitions to or out of synchrony
with hysteresis effects. We further uncover that the temporal
behavior near the transition can become nonstationary and
the trajectory can resemble quasiperiodic with multifrequency
spectra. The consequence of the existence of stable coherent
and stable incoherent states in the multistable region (cyan

shaded region in Fig. 2) seems to allow for a partially coherent
state with complex dynamical behaviors.

III. CONCLUSIONS AND DISCUSSION

We generalized the Kuramoto model of globally coupled
phase oscillators with time-delayed positive-negative cou-
pling. We have analytically and numerically studied the sta-
bility of coherent and incoherent states in this generalized
Kuramoto model. We derive the exact solutions for the critical
coupling strengths at different time delays for stable incoher-
ent and coherent states. These derivations provide insights
into how the interplay of time delays can affect collective
synchronization in cases of symmetric and asymmetric delays
between excitatory and inhibitory oscillators. We find that
fully coherent, incoherent, and multistable mixed (coherent,
partially coherent, incoherent) states with hysteresis effects
are possible dependent on the parameters in this general-
ized model. Time-delayed interactions are overall helpful
for achieving synchronization in case of dominant negative
coupling. The stable region of the incoherent state becomes
progressively smaller and smaller with increasing delay; the
area of the parameter space for the incoherent state and
partially coherent state decreases at a rate of inverse of time
delay. These results also suggest that delay effects can become
more significant [see the peaks of Figs. 2(a)–2(c)] for delays
near half the period of the oscillation or its multiples when
delays are in positive couplings [Figs. 2(a) and 2(b)] and
near the full period or its multiples when delays are only
in negative couplings [Fig. 2(c)]. Our numerical analysis
also uncovers that partially coherent or clustered states have
quasiperiodic and nonstationary collective behaviors near the
instability-stability boundaries. Previous studies extensively
investigated the effects of time-delayed coupling [8,9] and
positive-negative coupling [5,10,11] separately in the dynam-
ics of coupled Kuramoto oscillators. We have combined these
coupling schemes and obtained similar and unique analytical
results. The unique analytical results include that multistable
mixed states with hysteresis effects are possible in this system
and that a time delay in the negative coupling increases
the region of parameter space for a stable coherent state
in a strongly dominant negative coupling. We expect that
our work will be useful in trying to understand the role
of excitation-inhibition in self-organized realistic oscillator
systems, like the neuronal networks in the brain, where time
delays in neuronal processing and axonal conduction of action
potentials are inevitable and can vary with axonal sizes and
conditions during neurodevelopment, neuroplasticity, aging,
and neurodegeneration [30].
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