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Synonyms

Coherence and Granger causality spectral analysis; Multivariate spectral analysis; Oscillatory
network activity analysis

Definition

Spectral interdependency methods are a means of statistically quantifying the interrelationship
between a pair of dynamic processes as a function of frequency or time period of oscillation. The
measures of spectral interdependency are derived from the time series recordings of dynamic
systems either by using autoregressive modeling (parametric method) or by using direct Fourier
or wavelet transforms (nonparametric method). For a pair of multivariate stationary processes
(1 and 2), there are three measures that characterize the spectral interdependency between these
processes. They are total interdependence (M1,2), Granger causality (one-way effect or directional
influence from the first process to the second process, M1! 2, or from the second to the first, M2! 1),
and instantaneous causality (measure of reciprocity, M1.2). In general, the total interdependence is
the sum of directional influences and instantaneous causality frequency by frequency (M1,2¼M1! 2

+ M2! 1 + M1.2) and is related to coherence (C12) as M1,2¼� ln(1� C12). These measures can also
be estimated for nonstationary processes by using moving time-windowed autoregressive modeling
or Fourier transformations or wavelet transformations. Coherence and spectral Granger causality are
well-accepted measures in neuroscience to characterize frequency-specific interdependence
between multiple time series from multisite neurophysiological recordings.

Detailed Description

Many processes in nature, including brain processes, have oscillatory motion, and the time series
measurements of their activity are rich in oscillatory content, lending them naturally to spectral
analysis. Spectral interdependency methods are used to study the relationship in the frequency
domain betweenmultiple processes from their simultaneously recorded time series signals. Consider
a pair of zero-mean, stationary processes (1 and 2) in which simultaneously measured time series at
a sampling rate of fs are represented as 1: X1(1), X1(2), . . ., X1(t), . . . and 2: X2(1), X2(2), . . ., X2(t),
.... The spectral interdependency measures as defined above are derived from the spectral matrix
(S) and/or from the transfer function (H) and noise covariance matrix (∑), which can be estimated by
the parametric (Ding et al. 2006) or nonparametric approaches applied to these time series
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(Dhamala et al. 2008a, b). Brief mathematical derivations and descriptions of these interdependency
measures (C12, M1,2, M1! 2, M2! 1 and M1.2) are included below.

Directed transfer function (DTF) (Kaminski et al. 2001) and partial directed coherence (PDC)
(Baccala and Sameshima 2001) are the accepted alternative measures of directional influence,
equivalent to the measures for M1! 2 and M2! 1 as defined above. DTF is obtained from H and
PDC from the Fourier transform of model coefficients in the parametric approach.

Parametric Approach. Jointly, X1 and X2 series can be represented as the following bivariate
autoregressive (AR) models:

X 1 tð Þ ¼
X1

j¼1
a11, jX 1 t � jð Þ þ

X1
j¼1

a12, jX 2 t � jð Þ þ e tð Þ
X 2 tð Þ ¼

X1
j¼1

a21, jX 1 t � jð Þ þ
X1

j¼1
a22, jX 2 t � jð Þ þ � tð Þ, (1)

where e and � are residual (one-step-ahead prediction) errors and are uncorrelated over time. After
Fourier transforming the bivariate AR representation (1) and applying proper ensemble average, we
obtain the following spectral density matrix S as a function of frequency (f):

S fð Þ ¼ H fð Þ
X

H� fð Þ, (2)

where * denotes the matrix adjoint. Here, the noise covariance matrix ∑ is computed from the
residual errors e(t), �(t) and the transfer function matrix H(f) is constructed from the matrix inverse
of the Fourier transforms of the coefficients a’s:

P ¼ var eð Þ cov e,�ð Þ
cov e,�ð Þ var �ð Þ

� �

Hlm fð Þ ¼ dlm �
X1
k¼1

alm, ke
�i2pfk

 !�1

,
(3)

where dlm is the Kronecker delta function with the matrix element index lm.
Nonparametric Approach. S, H, and∑ can also be estimated by using the nonparametric spectral

methods (Dhamala et al. 2008a, b) without explicitly fitting the time series X1(t) and X2(t) in
autoregressive models. In this approach, S is constructed by Fourier transforming X1 and X2 and
properly averaging over ensembles usually with multitapers (Mitra and Pesaran 1999):

Slm ¼ x1 fð Þxm fð Þ�h i, (4)

where lm is the index for time series and matrix element, < > represents averaging over ensemble,
and X’s are the direct Fourier transforms of X’s. H and ∑ can be derived from the minimum-phase
factors of S:

H ¼ cA�1
0P ¼ A0A
T
0 ,

(5)

where T stands for matrix transposition, c(eiy) ¼ ∑k¼0
1 Ake

iky defined on the unit circle and

Ak ¼ 1
2p

ðp

�p

c eiy
� �

e�ikydy:
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Spectral Interdependence. The coherence function C(f) is derived from the cross spectra nor-
malized by the product of the individual auto spectra and measures the amount of interdependence
(synchrony) as a function of frequency:

C fð Þ ¼ S12 fð Þj j2
S11 fð ÞS22 fð Þ : (6)

C(f) is sensitive to both amplitude and phase relationships between processes at f and its value
ranges from 0 (no interdependence) to 1 (maximum interdependence). C(f) is related to Geweke’s
measure of total interdependence (M1,2) (Ding et al. 2006):

M 1, 2 fð Þ ¼ �ln 1� C fð Þð Þ, (7)

whose value ranges from 0 to infinity. The total spectral interdependence (M1,2) is equal to the sum
of Granger causality or directional influences (one-way effects, M1! 2 and M2! 1) and instanta-
neous causality (M1.2) (Geweke 1982):

M1, 2¼ M1!2 þM2!1 þM1:2 (8)

Here, directional influences between 1 and 2 are given by (Geweke 1982)

M1!2 fð Þ ¼ ln
S22 fð Þ

~H 11 fð ÞP11
~H
�
11 fð Þ M 2!1 fð Þ ¼ ln

S11 fð Þ
~H 22 fð ÞP22

~H
�
22 fð Þ, (9)

where ~H 11 ¼ H11 þ
P

12P
11

H12, ~H 22 ¼ H22 þ
P

12P
22

H21, and

instantaneous causality M1.2 is given by

M 1:2 fð Þ ¼ �ln
S fð Þj j

~H 11 fð ÞP11
~H
�
11 fð Þ�ð ~H 22 fð ÞP22

~H
�
22 fð Þ

� � : (10)

Granger causality at low frequencies between a pair of cointegrated series depends only on a few
statistically interpretable coefficients from the error correction model if Hosoya’s spectral decom-
position (Hosoya 1991) is used (Granger and Lin 1995).

The time-domain counterparts of these spectral measures in Eq. 8 are obtained by integrating the

spectral measures over the entire frequency range as 2
f s

ð f s
2

0
M fð Þdf . The integral of total

interdependence measures the total amount of mutual information, and the other integrals are simply
the respective time-domain measures of Granger causality.

Spectral Interdependence for Nonstationary Processes. The spectral interdependency measures
can also be defined for nonstationary processes by treating their time series in sufficiently short
windows as locally stationary processes. They can be estimated as a function of time and frequency
by using moving time-windowed autoregressive modeling (Liang et al. 2000), moving time-
windowed Fourier transformations (Shiogai et al. 2012), or wavelet transformations (Dhamala
et al. 2008a, b).
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Numerical Examples. Here, we generate time series (500 trials) from jointly stationary and
nonstationary processes and illustrate the estimation of coherence and Granger causality spectra
using the parametric (P) and nonparametric (NP) approaches. We consider two interacting
autoregressive processes, 2: {X2 (t)} driving 1: {X1 (t)}, similar to the network model considered
in Dhamala et al. 2008b, where X1 ¼ 0.55 X1(t � 1) � 0.8X1(t � 2) + C(t)X2(t � 1) + e(t) and
X2(t) ¼ 0.55X2(t � 1) � 0.8X2(t � 2) + �(t). Here, (e(t), �(t))’s are independent white noise
processes with zero means and unit variances, the sampling rate is considered to be 200 Hz, and the
coupling strength C(t) remains 0.25 for time t in the stationary condition and slowly changes from
0.25 to 0 around t ¼ 2 s in the case of nonstationary processes. P and NP approaches agree well in
coherence and Granger causality spectra (Fig. 1a, b). Morlet wavelet transform-based method yields
complete time-frequency maps of coherence (Fig. 1c) and Granger causality (Fig. 1d), consistent
with the trend of the 2 to 1 coupling as shown on the right side of Fig. 1d.

Extensions of Spectral Interdependency Methods. As an extension of the ordinary coherence
described above, block coherence (Nedungadi et al. 2011) can estimate coherence spectra between
pairs of nonoverlapping time series. Conditional Granger causality (Geweke 1984; Hosoya 2001)
measures directional influences between two processes eliminating the effect of a third process,

Fig. 1 Coherence (a, c) and Granger causality (c, d) spectra between stationary (a, b) and nonstationary (c, d) processes
(1 and 2). Parametric (P) and Fourier transform-based nonparametric (NP) methods are used here to evaluate these
quantities (a, b) between the stationary processes. The wavelet transform-based time-frequency maps of coherence (c)
and Granger causality (d) recover the time-varying nature of 2 to 1 coupling (shown on the right y-axis in d)

Encyclopedia of Computational Neuroscience
DOI 10.1007/978-1-4614-7320-6_420-1
# Springer Science+Business Media New York 2014

Page 4 of 6



thereby distinguishing between direct and mediated causality (Ding et al. 2006; Dhamala 2008b).
The multivariate version of the spectral Granger causality between two processes makes use of this
idea of eliminating the causal effect from all other interrelated processes as an extension of the
conditional Granger causality defined for three processes.

Applications in Neuroscience. Spectral interdependency measures have been instrumental in
attempts to understand the relationships between oscillatory brain processes at various spatial scales
from multisite brain activity recordings. Coherence is widely used in neuroscience (Siegel
et al. 2012; Roberts et al. 2013). The insights provided by this measure have even led to the
“neuronal communication through coherence” hypothesis (Fries 2005; Roberts et al. 2013). Spectral
Granger causality and equivalent directional measures have been used in a variety of brain signal
recordings, such as local field potentials, EEG, MEG, and fMRI, in animals and humans (see
Bressler and Seth 2011; Friston et al. 2012 for reviews). Because of the unknown theoretical
distributions of coherence and spectral Granger causality, establishing statistical significance in
these measures derived from experimental time series requires data resampling (surrogate) methods
such as jackknifing (Bokil et al. 2010), bootstrapping, and random permutation (Seth 2010).
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