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Abstract

The dorsal anterior cingulate cortex (dACC) and the anterior insulae (AIs) are coactivated in various perceptual
decision-making (PDM) tasks and form the salience network (SN): a key network in sensory perception and the
coordination of behavioral responses. However, what the functional role of SN is, how these key SN nodes interact
with each other to form a network in a perceptual decision, and how the network depends on the perceptual dif-
ficulty remain largely unknown. In the present study, we measured blood oxygen level-dependent (BOLD) signals
using functional magnetic resonance imaging (fMRI). During four PDM tasks (1) face–house discrimination, (2)
happy–angry face discrimination, (3) audiovisual asynchrony and synchrony perception, and a (4) random dot mo-
tion direction task, we varied the task difficulty and examined the interactions between these SN nodes. In all the
experiments, behavioral accuracy decreased and response time increased with task difficulty. The BOLD signal
increased in SN nodes with the ambiguity in the sensory information. We also found that there were significant
directed functional connections between AIs and dACC in all four tasks and that the interactions between these
nodes increased with task difficulty. The observed difficulty-dependent functional architecture of SN suggests
that the dACC and AIs are part of a large-scale cognitive system that facilitates sensory integration in PDM.
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network; task difficulty

Introduction

The dorsal anterior cingulate cortex (dACC) and the
anterior insulae (AIs) were found coactivated in neuro-

imaging studies on various perceptual decision-making
(PDM) tasks (Binder et al., 2004; Bushara et al., 2001; Dos-
enbach et al., 2007; Ham et al., 2013; Lewis et al., 2000;
Ploran et al., 2007; Tregellas et al., 2006). Together, the
AIs and dACC form the ‘‘salience’’ network (SN) (Seeley
et al., 2007; Sridharan et al., 2008), whose role in decision-
making process includes implementation of goal-directed
tasks (Dosenbach et al., 2006, 2007) and the coordination
of behavioral responses (Medford and Critchley, 2010).
We recently found that in a cognitively demanding goal-
directed task, AIs appeared to be involved in integrating in-
formation and driving dACC guidance of response selection
(Lamichhane and Dhamala, 2015b).

The dACC has long been implicated as a motor region due
to its activation during movement (Paus, 2001; Picard and
Strick, 1996). The dACC is also known to be associated
with goal-directed action selection (Dosenbach et al., 2007;
Medford and Critchley, 2010; Zysset et al., 2006). For exam-

ple, dACC is found activated in reward-based action selec-
tion (Holroyd and Yeung, 2012; Rushworth et al., 2007).
Lesions of dACC can hinder initiation of complex voluntary
movements and actions (Rushworth et al., 2004; Williams
et al., 2004) and cause increased and more variable response
times (RT) in humans (Stuss et al., 2005), and cingulotomy
patients usually recover most of these functions (Dougherty
et al., 2002). In nonhuman primates, lesions result in im-
paired attention to task demands and disrupted task switching
(Rushworth et al., 2003). Moreover, a recent study found that
lesions of the white matter bundles projecting to and from
dACC resulted in poor task performance (Metzler-Baddeley
et al., 2012). Effects are due to the dACC role in top–down
modulation of primary motor cortex (Taylor et al., 2007).

The AIs have been shown to be involved in cross-modal
perceptual integration (Bushara et al., 2001; Chang et al.,
2013; Ho et al., 2009; Lewis et al., 2000; Sterzer and
Kleinschmidt, 2010). In addition, the blood oxygen level-
dependent (BOLD) activity in AIs has been found correlated
with difficulty of sensory cues in a PDM task (Lamichhane
and Dhamala, 2015b). When the ambiguity in sensory infor-
mation increased, this would increase the task difficulty level
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and people would be uncertain for selecting and deciding the
appropriate action (Ho et al., 2009; Shenhav et al., 2013;
Woolgar et al., 2011). For optimal performance, such uncer-
tainty must be resolved (Botvinick et al., 2001), such as
through AI integration of choice and guide dACC to choose
appropriate behavior (Ho et al., 2009; Krebs et al., 2012;
Rushworth et al., 2004; Srinivasan et al., 2013; Venkatraman
et al., 2009; Wiech et al., 2010; Woolgar et al., 2011).

In this study, participants underwent functional magnetic
resonance imaging (fMRI) while completing four PDM
tasks: (1) face–house discrimination, (2) happy–angry face
discrimination, (3) audiovisual asynchrony and synchrony
perception task, and a (4) random dot motion (RDM) direc-
tion task. Here, task 3 involves both audio and visual stimuli,
which provides us the opportunity to examine and explore
the PDM in multi (bi-) sensory domain, whereas other three
tasks involve only visual stimuli. These altogether allows us
to investigate general brain mechanisms for decision-making
across a wide range of tasks with different stimulus types
and features. These four tasks were commonly used in the
past decade to investigate PDM processes in the brain and
all of the tasks involve decisions about two alternative choices
and stimulus-noise-dependent behavioral performance varia-
tions. Across all of these tasks, we aimed to uncover the exis-
tence of a common network pattern for PDM and the network
activity changes as a function of task difficulty. The rationale
of difficulty manipulation is to examine how the noise level
in stimuli influences nodal activity and network interac-
tions among the nodes of SN. A recent work (Lamichhane
and Dhamala, 2015b) showed that the activity of SN nodes
is positively correlated with task difficulty. An increased en-
gagement of SN in difficult task was proposed as neural signa-
ture of higher effort in sensory integration salience to task at
hand (see Ham et al. (2013)) for a different opinion]. This find-
ing prompted a question: is the SN functional architecture de-
pendent on task difficulty? If so, how are nodes of the SN
engaged to form perceptual decisions? We predicted a higher
node and network-level activity within SN as required for
stimulus salience integration in choosing appropriate motor
command caused by ambiguity in sensory information (Ho
et al., 2009; Krebs et al., 2012; Rushworth et al., 2004; Shen-
hav et al., 2013; Srinivasan et al., 2013; Venkatraman et al.,
2009; Wiech et al., 2010; Woolgar et al., 2011). In addition
to the findings of previous studies on the insula, a key struc-
ture in PDM (Binder et al., 2004; Grinband et al., 2006; Ho
et al., 2009; Ploran et al., 2007; Tregellas et al., 2006) and
a cortical ‘‘out flow hub’’ to influence dACC activity (Ham
et al., 2013; Menon and Uddin, 2010; Sridharan et al., 2008),
we aimed to provide additional evidence on its role in sen-
sory integration and sensory motor mapping in coupling to
dACC, a region known to have a major role in motor selec-
tion. Moreover, we explored how network interactions are
modulated by decision difficulty across a variety of percep-
tual tasks in moment-to-moment integration of sensory infor-
mation in PDM.

Materials and Methods

Participants

There were 32 human participants (16 males, 16 females;
mean age – standard deviation = 27.6 – 4.7 years) who com-
pleted all four experimental tasks: (1) face–house discrimina-

tion, (2) happy–angry face discrimination, (3) audiovisual
asynchrony/synchrony perception, and (4) an RDM direction
discrimination task. One more male participant took part in
face–house discrimination and in audiovisual asynchrony
and synchrony perception tasks. Each participant visited for
two MR scanning sessions on 2 different days within a 7-
day period. Participants completed tasks 1 and 3 in the first
visit, and tasks 2 and 4 in the second visit. Both behavioral
data (performance accuracy) and fMRI data associated with
the corresponding tasks were all collected. Behavioral data
(performance accuracy and RTs) were collected outside the
scanner first, and then, the behavioral data (performance accu-
racy) and brain data were collected inside the scanner. All par-
ticipants had normal or corrected to normal vision and
reported normal neurological history. No participant reported
difficulties recognizing red and green dots during practice ses-
sion hence no red/green color blindness was reported. Partic-
ipants provided written signed informed consent forms and
were compensated for their participation in the experiments.
Institutional Review Board for Joint Georgia State University
and Georgia Institute of Technology Center for Advanced
Brain Imaging, Atlanta, Georgia, approved these studies.

Stimuli

Experiment 1: face–house discrimination task. In the
face–house discrimination task, a total of 14 images of
faces and 14 images of houses were downloaded from
F.A.C.E. Training—an interactive training by Paul Ekman
(www.paulekman.com/product/pictures-of-facial-affect-pofa/)
and were equalized for luminance and degraded by means of
image pixel phase randomization with addition of Gaussian
noise to produce three different noise levels: 0%, 40%, and
55% for both sets of images. Behavioral experiments were
conducted outside the scanner to gain some rough estimates
of error trials. Before the actual experiments, six subjects
participated in the behavioral experiments outside the scan-
ner designed to determine the highest difficulty (e.g., noise)
levels with performance accuracy close to 70%. We first
created three difficult conditions based on our initial guess
and previous reports, asked subjects to perform 100 trials,
and counted the error trials. Then, based on the results of
error trials, we adaptively modified the conditions and re-
peated the same procedure until we determined the difficult
level that provided behavioral accuracy close to 70%.

The visual stimuli (faces and houses) subtended 4.34! by
6.08! visual angles (see, Lamichhane et al., 2016).

Experiment 2: happy–angry face discrimination task. In
the happy–angry face discrimination task, two sets of
human face images, a happy set and an angry set, were
used as stimuli. Each set consisted of eight images (four
males and four females), which were degraded and subject
to additional noise to make two stimulus categories: clear
image category (0% noise) and a noisy image category
(40% noise), which formed the variables of interest. The
two noise levels were decided to make the task difficult at
or above 70% behavioral accuracy, with similar piloting pro-
cedures mentioned earlier in the face–house experiment.
Thus, fMRI analysis was carried out based on noise level,
rather than the happy or angry face categories investigated
in a previous study (Bajaj et al., 2013).

2 LAMICHHANE ET AL.



Experiment 3: audio-visual asynchrony and synchrony per-
ception task. In the audio-visual discrimination task, we
used pairing of a single auditory stimulus, a 440-Hz–30-ms
tone, and a visual stimulus, a 30-ms yellow-red disc flash
(0.7 cm radius). Here, the flash of light (visual stimuli) was
presented at the central position on the computer screen
and the beep sound (auditory stimuli) was delivered through
a pair of earphones, one on each ear. The actual behavioral
run outside the scanner was conducted after we identified
the point of subjective simultaneity, that is, how far apart
in time the asynchronously presented audio and visual pair
could be perceived as synchronous (for detail, see (Lamich-
hane et al., 2015b)). For this purpose, we presented audio and
visual stimuli with a systematically varying asynchrony lag
of 66.6, 83.3, 100, 116.6, 133.3, 150, and 166.6 ms, 20 trials
for each lag totaling 140 trials. The choice of these lags was
based on the previous studies at which humans can detect au-
diovisual asynchrony (Pons et al., 2014; van Eijk et al., 2008;
van Wassenhove et al., 2007; Zampini et al., 2005; Zampini
et al., 2003). The inter-trial interval (the pause, s, based on
the previous studies) was chosen randomly between 1000!
1160 ms. We looked at the fraction of the trials from this
run and chose the time lag (DT), as a threshold value, in
which performance accuracy was 50:50 or close to it for
the trials that were perceived as synchronous or asynchro-
nous. For the recordings outside and inside the scanner, the
time lags (DT) were varied beyond the individual’s threshold
value for audio-visual simultaneity with an increment be-
tween !16.6 ms and +16.6 ms and, for an fMRI session, s
was 1666–1926 ms.

Experiment 4: RDM direction discrimination task. In the
RDM direction discrimination task, randomly moving
noisy field of dots were used as stimuli and were presented
within a circular aperture at the center of screen. In RDM,
the coherence level was determined by the percentage of
dots moving in the left or right direction while the remaining
dots were moving in the random direction. The dot motion
was induced by redrawing dots at a neighboring spatial loca-
tion after 50 ms within black background circular aperture of
7.5 cm diameter for 34 ms in which dot appeared to move be-
tween 3! and 7!/s and at a density of 16.7 dots per deg2/s.

We manipulated task difficulty level by mixing red and
green dots in our RDM. First, we varied the proportion of
the dots that are either moving to the left or right independent
of color. Second, out of two colors, we assigned the green
color for the dots that are moving in particular direction (ei-
ther to the left or right direction only) and red to the dots that
were moving in a random direction. With this manipulation
we introduced three coherence levels in RDM (12%, 20%
and 100%) in both color coherence (C) and color incoher-
ence (IC) conditions. For example, in 20% C, the 20% of
dots were green and all moved in one direction (left or
right) while the 80% of dots were red and moved in random
directions. Similarly, in 20% IC, RDM still consisted of 20%
of green and 80% red dots. However only 20% of dots inde-
pendent of color were moving in a particular direction while
the remaining 80% were moving in random directions. How-
ever, in 100% C and IC (50% red dots and 50% green dots),
all moved in one direction, so we refer to this stimulus con-
dition simply as 100% (for greater details, see (Lamichhane
et al., 2016).

The stimuli features are displayed in (i) of A, B, and D in
Figure 1 and details about trial sequence are shown in (ii) of
A, B, D, and in C (Fig. 1) for these tasks.

Data acquisition and analysis

In all of our experiments, data were collected in two separate
sessions: the first session involved acquiring behavioral data
(behavioral performance and RT) outside the MRI scanner
and the second session was inside the scanner where we ac-
quired both fMRI data and behavioral performance. Subjects
indicated their decisions by keyboard presses outside the scan-
ner and button presses on a response box inside the MRI scan-
ner. Outside the MRI scanner, participants were seated about
70 cm away from the computer screen used to present the stim-
uli and indicated their decisions as quickly and as accurately as
possible by left/right mouse clicks and pressed the space bar in
the computer keyboard to proceed to the next trial. Inside the
MRI scanner, they were required to focus on the central cross-
bar, perceived the presented stimuli, waited for the display of a
question mark on the screen, and then indicated their choice by
pressing the left/right key on a button box with either their right
index or middle finger. This was to avoid recruiting brain
motor response along with the PDM-related brain areas.
Thus, we recorded RT only outside the scanner. The stimulus
software presentation (www.neurobs.com) was used to display
stimuli and to randomize task trial sequences.

In the face–house discrimination task, participants were
asked to indicate their decisions by the right mouse click if
they decided that the presented picture was house and left
mouse click for face picture outside the scanner, and inside
the scanner the correct responses for houses and faces were
right button and left button clicks, respectively. Similarly,
the correct response for happy faces was left mouse and
left button and that of angry faces was right mouse and
right button press outside and inside the scanner, respec-
tively. In audiovisual task, participants reported their percep-
tion by left mouse and left button if they perceived
synchrony or right mouse and right button for asynchrony.
Similarly, in RDM, the left mouse and left button clicks
were for leftward moving dots and the right mouse and
right button were for rightward moving dots.

Outside the fMRI scanner. In face–house discrimination
task, the behavioral study consisted of a single run. There
were three noise-level conditions and each condition was re-
peated 60 times (30 times each for faces and houses) in a ran-
dom order, generating 180 trials in total. In happy–angry face
discrimination task, we have one functional run where each
condition (clear and noisy condition) was presented 60 times
(30 times each for happy faces and for angry faces) in a ran-
dom order, totaling 120 trials. In audiovisual asynchrony
and synchrony perception task, the pair of stimuli was pre-
sented 60 times, 20 at each DT. In RDM direction discrimina-
tion task, RDM stimuli with identical parameters (12% and
20% C, 12% and 20% IC, 100%) were presented for 1 sec
as a single event and consisted of a single run. Each condition
was presented 30 times, totaling 180 trials. Both behavioral
performance and RT were recorded outside the scanner.

Inside the fMRI scanner. Inside the fMRI scanner, fMRI
data were acquired and behavioral responses were recorded.
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Each functional session started with 30 sec of initial rest and
ended with 35 sec of final rest. Participants performed face–
house categorization tasks in three functional runs, each
614 sec long, the number of trials for each noise-level condi-
tion was 36 (18 faces and 18 houses), and there were a total
of 108 for all three conditions in each run. Stimuli were pre-
sented in a random order as in an event-related design within
each run. In happy–angry face discrimination task, subjects
performed two functional runs; each of 674 sec long and
the total number of trials was 80, that is, 40 trials for each
condition (clear and noisy).

In audiovisual asynchrony and synchrony perception task,
data were recorded in a single functional run, there were 24
multisensory (both a flash of light and a beep sound) task

blocks and 8 unisensory (either a flash of light or a beep
sound) task blocks, and within a block, given stimuli were
presented eight times. Similarly, in RDM direction discrim-
ination tasks, there were 12 trials for each condition (RDM
with identical parameters either 12%, 20% C or 12%, 20%
IC and 100% presented for 15 consecutive times, for the
total of 24 sec, in a block), all together 72 trials inside the
scanner in two sessions. In this task, we did not find any sta-
tistical significant difference on behavioral response and RT
between 12% and 20% C and IC stimulus conditions. We
then combined the data and used three stimulus conditions:
12% and 20% C, 12% and 20% IC, and 100% for further
analysis. The experimental details of these four tasks are pro-
vided in Table 1.

FIG. 1. Experimental paradigms. (A) Face–house discrimination task: (i) sample images at three noise levels for face and
house stimuli set. (ii) task paradigm during a functional run, starting from the initial 30-sec rest followed by a task trial that
included 500 msec stimulus presentation, 8 sec of decision time, and 500 msec display of a question mark, requiring participants
to indicate their decision within the next 6 sec (Lamichhane and Dhamala, 2015a). (B) Happy–angry face discrimination task: (i)
sample images at two noise levels of both happy and angry stimuli set. (ii) task paradigm during the functional experiment start-
ing from initial 30-sec rest followed by task trial with a brief stimulus presentation for 500 msec duration, 8 sec of decision time,
followed by a briefly presented question mark for 500 msec referring subjects to indicate their decision within the next 6 sec
(Bajaj et al., 2013). (C) Audiovisual asynchrony and synchrony perception task: task paradigm during the functional experiment
started with initial 30 sec of rest followed by task blocks and 35 sec of rest at the end of the run. There were two types of block:
multisensory blocks (beep–flash pairs were presented for 30 msec, as shown in figure) and unisensory blocks (flash only or beep
only were presented, not shown in figure). The time intervals between a flash and a beep sound (DT) varied from participant to
participant. Stimuli within the block were presented with the random pause (s) of 1666 to 1926 msec followed by the cue of
600 msec at the end of each block, totaling about 24 sec of one block. Participants were asked to respond after the cue was pre-
sented. In unisensory blocks, no question was asked about asynchrony and synchrony perception at the end of block (see Lam-
ichhane and Dhamala, 2015b). (D) RDM direction discrimination task: (i) schematic representation of RDM stimuli: color
coherence 12% and 20% (top), color incoherence 12% and 20% (middle) and 100% (bottom). (ii) Task paradigm during the func-
tional experiment started with initial 30-sec rest followed by the block of RDM presented for 15 consecutive times for the total of
24 sec. A question mark presented for 600 msec asking subjects to indicate their decision, which is followed by 17 sec of pause.
RDM, random dot motion. (for detail, see Lamichhane et al., 2016). Color images available online at www.liebertpub.com/brain
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Participants’ behavioral performance, both outside and in-
side the scanner, was analyzed by using MATLAB. Trial by
trial RTs of each participant from outside scanner button
presses were separated and averaged across noise level in
each task condition. No RT calculation was done for the
recorded behavioral data inside the scanner. Paired t-tests
were used to assess the significance levels of performance
accuracy and RT across noise levels.

fMRI data

The whole-brain MRI was done on a 3-Tesla Siemens
scanner available at the Georgia State University and Geor-
gia Institute of Technology Center for Advanced Brain
Imaging, Atlanta, Georgia. High-resolution anatomical
images were acquired for anatomical references using a
magnetization-prepared rapid gradient-echo sequence (with
repetition time [TR] = 2250 msec, echo time [TE] = 4.18
msec, flip angle = 9!, inversion time = 900 msec, voxel size =
1 · 1 · 1 mm3). The functional scans were acquired with
T2*-weighted gradient echo-planar imaging protocol with
the following parameters: TE = 30 msec, TR = 2000 msec,
flip angle = 90!, voxel size = 3 · 3 · 3 mm3, field of view =
204 · 204 mm, matrix size = 68 · 68 and 37 axial slices
each of 3 mm thickness. MRI data were analyzed using Stat-
istical Parametric Mapping (SPM8; Wellcome Trust Center,
London, www.fil.ion.ucl.ac.uk/spm), which included slice
timing correction, motion correction, coregistration to indi-
vidual anatomical image, and normalization to Montreal
Neurological Institute (MNI) template (Friston et al., 1995).
Spatial smoothing of the normalized image was done with an
8-mm isotropic Gaussian kernel. A random-effect, model-
based, univariate statistical analysis was performed in a
two-level procedure. In all four experiments, we used the

parameterization above and the same MRI data analysis
procedures, unless otherwise stated.

At the first level, a separate general linear model (GLM)
was specified according to the task sequences and behavioral
responses for each participant. Only correct trials for each con-
dition (noise levels: 0%, 40%, 55% in face–house discrimina-
tion task; 0%, 40% in happy–angry face discrimination task;
asynchrony and synchrony conditions in audiovisual asyn-
chrony and synchrony perception task; 12% and 20% C and
IC, and the 100% condition in RDM direction discrimination
task), rest and six motion parameters were included in GLM
analysis. We restricted our analysis to correct trials because
there were very few incorrect trials, especially in easy task
conditions, which were not enough for reliable estimates of
differences across conditions. The six motion parameters
were entered as nuisance covariates and were regressed out
of the data. Individual contrast images of all participants
resulting from the first-level analysis were then entered into
a second-level analysis for a separate one-sample t-test. The
resulting summary statistical maps were then thresholded
and overlaid on high-resolution structural images in MNI
orientation. The activation clusters were identified under
the statistical significance p < 0.05, familywise error (FWE)
correction, for multiple comparisons correction, and cluster
extent k ‡ 10; except in moving dot task where statistical sig-
nificance was p < 0.01, FWE correction.

Connectivity analysis

The regions of interest (ROIs) were based on activation t-
maps. We defined three ROIs, by generating a sphere of
6 mm radius in MarsBar (Brett et al., 2002), for the SN
nodes. The center coordinates were (!6, 11, 52) for the
dACC, (!30, 20, 4) for the left insula (lAI), and (33, 20,

Table 1. Summary: Experimental Details on Four Tasks

Outside the scanner Inside the scanner

Face–house
task

n = 33 (17 F, 16 M) No. of run = 1 No. of run = 3
m = 27.5 – 4.7 years No. of noise level = 3 No. of noise level = 3

No. of trials per noise level = 60 No. of trials each noise level = 36
Scanning time = 614 sec/run

Happy–angry
task

n = 32 (16 F, 16 M) No. of run = 1 No. of run = 2
m = 27.6 – 4.7 years No. of noise level = 2 No. of noise level = 2

No. of trials per noise level = 60 No. of trials each noise level = 40
Scanning time = 674 sec/run

Audiovisual
task

n = 33 (17 F, 16 M) No. of run = 2 No. of run = 1
m = 27.5 – 4.7 years Run 1

No. of time lags for SOA = 7 No. of multisensory blocks = 24
No. of trials per lag = 20 No. of unisensory blocks = 8
Run 2 Scanning time = 898 sec/run
No. of time lags for SOA = 3
No. of trials per lag = 20

Random dot
motion task

n = 32 (16 F, 16 M) No. of run = 1 No. of run = 2
m = 27.6 – 4.7 years No. of conditions = 2

(coherence, incoherence)
No. of conditions = 2 (coherence,

incoherence)
No. of coherence/incoherence level = 3 No. of coherence incoherence level = 3
No. of trials per condition

for each level = 30
No. of trials per condition

for each level = 12
Scanning time = 810 sec/run

n, number of participants; m, mean age; F, female; M, male; SOA, stimulus onset asynchrony; –values, standard deviations.
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4) for the right insula (rAI) in all tasks. These coordinates
matched exactly or were very close to local maxima from
the second-level group analysis of fMRI data (Table 2).
The time courses from all the voxels within each ROI and
all subjects were extracted for each experimental task for
the aforementioned conditions. We performed Granger cau-
sality (GC) analysis to characterize the directional influences
between ROIs.

Since fMRI-BOLD signals are believed to originate from
smoothing of neuronal activity by the hemodynamic re-
sponse function (Aguirre et al., 1998; Handwerker et al.,
2004), we constructed hidden neural signals by hemody-
namic deconvolution for each ROI data, as suggested in pre-
vious studies (David et al., 2008; Handwerker et al., 2004;
Roebroeck et al., 2011; Valdes-Sosa et al., 2011; Wu et al.,
2013). We used these deconvolved fMRI-BOLD time series
for functional directed connectivity calculation. The ensem-
ble mean removed segmented deconvolved time series from
separate voxels and subjects were treated as trials for reli-
able estimates of the network measures. We calculated the
frequency-dependent parametric GC spectra (Dhamala
et al., 2008) for pairs of ROIs. GC spectra can be estimated

by parametric and nonparametric methods (Dhamala et al.,
2008). GC spectra from the parametric and nonparametric
match very well when many data samples are collected
(long time series and many trials) and appropriately modeled
in the parametric approach. Theoretically, time series need to
be modeled by infinite series of autoregressive processes. In
practice, we have finite data points, but we still need to find
an appropriate model order for a given data. As it is often dif-
ficult to find an appropriate model order for brain data with
the traditional Akaike information criterion and Bayesian in-
formation criterion (Antzoulatos and Miller, 2014; Dhamala
et al., 2008), when appropriately modeled, the parametric
method yields GC values that have less bias for short time se-
ries data (please see the appendix of Dhamala et al., Neuro-
Image, 2008). To take advantage of both approaches, in this
study, we determined the optimal model order for the para-
metric method using a method developed recently (Adhikari
et al., 2014) by comparing the power spectra from nonpara-
metric and parametric approaches at different model orders,
and choosing the model order yielding the lowest power dif-
ference. From the parametric spectral GC, the time domain
values were obtained by integrating the causality spectra

Table 2. The Brain Activations for Various Contrasts

Contrast Brain regions
Cluster

size
Voxel t

(z-equivalent)
MNI coordinates

x, y, z

Noisy (faces+houses)
vs. clear (faces+houses)

R Insula 54 8.75 (6.21) 33, 20, 4
dACC 109 7.96 (5.87) !6, 17, 52
L Insula 40 7.85 (5.82) !30, 23, 1
L IFG 25 6.70 (5.26) !39, 5, 34
R IFG 27 6.67 (5.24) 45, 8, 25

Noisy vs. clear
(happy+angry faces)

R Insula 64 8.94 (6.24) 33, 20, 4
L Insula 65 8.12 (5.90) !30, 23, 4
dACC 34 5.93 (4.93) 0, 17, 52

Audiovisual vs. (beep+flash) dACC 122 9.78 (6.61) !6, 11, 52
R MOG 71 8.84 (6.24) 27, !97, !5
L IFG 47 8.42 (6.07) !60, 8, 28
R Thalamus 101 8.41 (6.07) 3, !3, 1
L Insula 84 7.76 (5.78) !30, 20, 4
R Insula 117 7.62 (5.73) 33, 20, 4
L MOG 37 6.80 (5.31) !27, !94, !5
L IPL 42 6.67 (5.24) !33, !49, 46

Moving dots (12%+20%)
C+(12%+20%) IC
vs. 100% (C+IC)

R VC 1026 13.17 (7.59) 24, !88, !11
L VC 774 12.66 (7.46) !21, !97, 7
R MT 103 9.86 (6.59) 48, !67, 4
R Insula 108 9.71 (6.53) 30, 20, 4
L Insula 50 7.81 (5.76) !30, 20, 4
R dlPFC 356 8.74 (6.16) 42, 11, 22
R SEF 146 8.42 (6.03) 36, !1, 49
L IPL 75 7.92 (5.81) !30, !49, 46
R IPL 144 7.69 (5.71) 39, !40, 43
L MT 28 7.60 (5.66) !42, !64, 4
dACC 14 7.58 (5.66) !6, 11, 52
L dlPFC 59 7.35 (5.55) !51, 2, 34
R MOG 11 6.87 (5.31) 30, !67, 25
L SEF 12 6.69 (5.22) !33, !7, 52

The table above lists brain activations for various contrasts. It includes the information about the anatomical locations, cluster sizes, t-value
(z-score), and MNI coordinates for the activations under statistical significance p < 0.05 familywise error correction, for multiple compari-
sons correction, and cluster extent k ‡ 10.

C, color coherence; IC, color incoherence; L, left; R, right; dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex;
IFG, inferior frontal gyrus; IPL, inferior parietal lobule; MFG, middle frontal gyrus; MNI, Montreal Neurological Institute; MOG, middle
occipital gyrus; MT, middle temporal cortex; SEF, supplementary eye fields; VC, visual cortex (occipital lobe).
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over the entire frequency range. The significant GC spectra,
and hence the significant network connections, were defined
by setting a GC threshold above the random noise baseline.
To compute the threshold value of GC, we constructed a
set of surrogates by randomly permuting trial data from
each subject and used a random permutation technique
(Blair and Karniski, 1993; Brovelli et al., 2004). The thresh-
old was thus based on the null hypothesis that there was no
statistical interdependence between nodes when trials were
randomized. We computed GC spectra from all possible
pairs of ROIs with a minimum of 1000 random permutations
and picked maximum GC on each permutation. By fitting the
distribution with a gamma distribution function (Dhamala
et al., 2008), we obtained the threshold for GC spectra at sig-
nificance p < 10!3 from the ROIs from each experiment sep-
arately. This threshold GC was used to identify significantly
active directed network activity among three ROIs calculated
in pairwise GC analysis. We have also performed the condi-

tional GC analysis and ruled out the interactions that were
found mediated by another node, if any. We computed the
time domain GC values for significantly active network di-
rections and performed paired t-tests on these values to
find the significant network modulation in our tasks by dif-
ferent noise levels in the task stimuli.

Results

Behavioral response

In the face–house discrimination task, the mean perfor-
mance accuracy rate decreased with noise outside of the
scanner 99.3% – 1.3% (0% noise), 89.5% – 7.3% (40%
noise), and further to 68.5% – 7.9% (55% noise). Values –
represent the standard deviations throughout the article.
Similar decreases occurred inside the scanner (97.9% –
3.4%, 87.0% – 7.9%, and 65.1% – 9.8%). Accuracy decreased
significantly with noise level ( p < 0.001; Fig. 2A). RTs

FIG. 2. Behavioral results. (A) Face–house discrimination task: the mean performance (%) is significantly decreased
( p < 0.001) with increase in noise levels (0% noise level to 40% noise level and then to 55% noise level) both outside
(first column) and inside (second column) the fMRI scanner and the RT outside the fMRI scanner (third column) is signif-
icantly increased ( p < 0.001) with the increase in noise levels. (B) Face–house discrimination task: mean performance (%) is
significantly decreased ( p < 0.001) and RT is significantly increased ( p < 0.001) when noise level is increased from 0% to
40%. (C) Audiovisual asynchrony and synchrony perception task: behavioral responses were categorized based on partici-
pants’ perception of asynchrony and synchrony. The plots show mean asynchrony perception (Asyn) and synchrony percep-
tion (Syn) in percentage outside (first column), inside (second column) the fMRI scanner, and RT outside the fMRI scanner
(third column), which are statistically different ( p < 0.01). (D) RDM direction discrimination task: the bar plots represent
mean performance (%) outside (first column), inside (second column) the fMRI scanner, and RT outside the fMRI scanner
(third column) for three task levels (100%, 12%, and 20% coherence, and 12% and 20% incoherence, respectively). Error
bars represent standard error of the mean. **p < 0.01 and ***p < 0.001. fMRI, functional magnetic resonance imaging. n.
s., not significant; RT, response time. Color images available online at www.liebertpub.com/brain
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significantly increased with noise level ( p < 0.001). The
mean RTs were 0.79 – 0.17 sec (0% noise), 0.94 – 0.22 sec
(40% noise), and 1.13 – 0.28 sec (55% noise; Fig. 2A).

In the happy–angry face discrimination task, participants
correctly responded with an average rate of 98.9% – 2.2%
for clear images, with 86.4% – 8.3% for noisy images outside
the scanner, and 97.7% – 3.2% and 76.3% – 11.9%, respec-
tively, inside the scanner (Fig. 2B). More time was taken
to respond to noisy images (1.07 – 0.21 sec) compared to
clear images (0.88 – 0.17 sec). Behavioral accuracy de-
creased significantly with noise both inside and outside the
scanner ( p < 0.001). The addition of noise on images signif-
icantly increased RT ( p < 0.001; Fig. 2B) in addition to sig-
nificantly decreasing the performance accuracy.

In the audiovisual asynchrony and synchrony perception
task, we categorized the behavioral responses based on partic-
ipants’ perception of asynchrony and synchrony. The mean
performance rate outside the scanner was about 34% and
66% (–19.7%) for asynchrony and synchrony perception, re-
spectively. Similarly, the mean performance rate inside the
scanner was 41% and 61% (–17.6%). Discrimination among
these percepts differs statistically both outside and inside the
scanner ( ps < 0.001). More time was taken to respond with
the asynchrony perception (0.96 – 0.30 sec) compared to syn-
chrony perception (0.79 – 0.20 sec; p < 0.01). These results are
shown in Figure 2C.

In RDM direction discrimination task, participants’ perfor-
mance accuracy rates for correctly deciding the direction
of randomly moving dots were 99.6% – 1.4% for 100%,
81.8% – 10.3% for combined 12%, 20% C, and 68.3% –
9.7% for combined 12%, 20% IC outside the scanner. Inside
the scanner, accuracies were 99.4% – 2.4%, 97.7% – 6.3%,
and 92.7% – 9.4%, respectively. Compared to 100%, com-
bined 12%, 20% C and combined 12%, 20% IC conditions

had significantly lower accuracies ( p < 0.001) in the record-
ings outside the scanner, while inside the scanner, perfor-
mance accuracy was significantly reduced ( p < 0.001) in
case of combined 12%, 20% IC in comparison with 100%.
Furthermore, RT for the participants’ to report their decision
increased from 1.07 – 0.33 sec (100% condition) to 1.23 –
0.33 sec (C) and 1.25 – 0.31 sec (IC). Behavioral accuracy
was significantly greater ( p < 0.001) and RT significantly
lower ( p < 0.001) for IC, C compared to 100% condition out-
side the scanner as shown in Figure 2D.

Brain response

In the face–house discrimination task, brain activations
were computed by contrasting the difficult pictures (40%
and 55% noise level combined and independent of faces
and houses) versus clear pictures (0% noise level). We
found significant brain activations in prefrontal cortices,
left and right AI, dACC, listed in Table 2.

In happy–angry face discrimination task, bilateral AIs and
dACC were found activated more by 40% noisy pictures
compared to clear (0% noise) pictures, as shown in Table 2.

In audiovisual asynchrony and synchrony perception task,
we contrasted asynchrony perception+synchrony perception
to auditory (only beep)+visual (only flash). The significant
brain activations were found in the dACC, AIs, bilateral mid-
dle occipital gyrus, inferior frontal gyrus, thalamus, and infe-
rior parietal lobule, as shown in Table 2. In this study, we used
GC techniques to study directed functional connectivity pat-
terns within main SN nodes at the two-perception level (asyn-
chrony and synchrony perception). One set of data was
analyzed in a previous study (Lamichhane and Dhamala,
2015b) that used a different effective approach: dynamic
causal modeling (DCM) to explore the effective connectivity

FIG. 3. Mean contrast values: Con-
trast values (b) were calculated, for
noise levels: 0%, 40%, and 55% face
and house stimuli (A); 0% and 40%
happy and angry face stimuli (B); for
asynchrony perception and synchrony
perception for audiovisual (a beep
sound and a flash of light) stimuli (C);
and for 100%, 12%, and 20% coher-
ently and 12% and 20% incoherently
moving dots (D), from dACC, left
insula (lAI), and right insula (rAI) from
each subject and used to calculate
mean beta and the standard error of the
mean. AIs, anterior insulae; dACC,
dorsal anterior cingulate cortex. Color
images available online at www
.liebertpub.com/brain
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in audiovisual perceptual task regardless of difficulty levels. In
this work, we regarded detecting asynchrony and synchrony as
two-task difficulty levels. This is based on previous studies
(Adhikari et al., 2013; Dhamala et al., 2007; Lamichhane
and Dhamala, 2015b; Stevenson and Wallace, 2013; Vatakis
and Spence, 2006) that people find it more difficult to detect
asynchrony compared to synchrony in audiovisual events.

In the RDM direction discrimination task, we have con-
trasted brain activity for 12% and 20% stimulus conditions
(both C and IC) with that of the 100% condition. We
found significant activation for bilateral visual cortex, mid-
dle temporal, insulae (AIs), frontal (dorsolateral prefrontal
cortex, supplementary eye fields) and parietal (inferior pari-
etal lobule) cortices and dACC, as shown in Table 2. All the
activations shown in Table 2 were statistically significant for
FWE correction, p < 0.05 and cluster-level threshold, k > 10;
except in moving dot task where statistical significance was
p < 0.01 (FWE). The coronal slice in Figure 4 shows activa-
tion in bilateral AIs and dACC.

BOLD response (contrast values)

We carried out the analysis to answer how node activity
within the SN gets modulated with task difficulty (or with
noise level for different stimulus conditions). We calculated
region-specific beta values (b) from each participant for
each stimulus condition for all the noise levels considered,
in these tasks, and were averaged to produce average b from
dACC, left insula (lAI) and right insula (rAI). The node activ-
ity, indicated by contrast values, was significantly modulated
( p < 0.05) due to task difficulty, as shown in Figure 3A for the
face–house discrimination task for three noise levels: 0%,
40%, and 55%; Figure 3B for happy–angry face discrimina-
tion task for 0% and 40% noise levels; Figure 3C for asyn-
chrony perception and synchrony perception for audiovisual
asynchrony and synchrony perception task, and Figure 3D
for the RDM direction discrimination task for 100%, com-
bined 12%, 20% coherently and combined 12%, 20% incoher-
ently moving dots.

FIG. 4. Salience network interactions: Significant causal interaction directions among three nodes, dACC, left insula (lAI), and
right insula (rAI), during four perceptual tasks are shown. The significant causal connections as determined by using permutation
threshold criteria and by ruling out the mediated interactions (as shown by green dotted line with an arrowhead) using conditional
Granger causality analysis are shown either by a solid line with an arrowhead or dotted line with an arrowhead. Red solid line with
an arrowhead represents an increase in causal interactions ( p < 0.05), whereas the dotted line (red or blue) with an arrowhead
represents insignificant change in interactions when the causal strengths between conditions were compared. Here, red/blue dot-
ted lines represent the increased/decreased causal interactions. (A) Network interactions during face–house discrimination task
when connection strengths during (i) 40% noisy face–house stimuli, and (ii) 55% noisy face–house stimuli were compared to
0% noisy face–house stimuli, respectively. (B) Network interactions during happy–angry face discrimination task when causal
influences for 40% noisy happy–angry face stimuli were compared to 0% noisy happy–angry face stimuli. (C) Network inter-
actions during audiovisual asynchrony and synchrony perception task where the causal influences in asynchrony were compared
to synchrony. (D) Network interactions during RDM direction discrimination task when connection strengths during (i) 12%
and 20% color coherence, and (ii) 12% and 20% color incoherence were compared to 100% dots moving in a particular direc-
tion, respectively. For better comparisons of the results, we have used the coronal slice view showing three nodes, which may
not necessarily show their peak activation voxel locations. Color images available online at www.liebertpub.com/brain
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SN activity

We computed GC spectra to assess oscillatory network in-
teractions among the three nodes: dACC, lAI, and rAI that
form the SN. GC (pairwise GC) spectra were calculated sep-
arately for different noise levels for each condition in all four
tasks. At first, we used the permutation threshold criteria to
find the significant causal interaction directions and then,
the conditional GC to rule out the mediated interactions (de-
tails in Materials and Methods section). The significant
causal connections among these three nodes are shown in
Figure 4 by either a solid line or a dotted line (red or blue)
with an arrowhead. The green dotted lines represent the
directions of mediated interactions and are ruled out. For
example, in Figure 4B, all the interaction directions are signif-
icant for clear (0% noise) and noisy (40% noise) happy–angry
face images. Regarding solid lines, they represent the signifi-
cant change in causal interactions when compared between
conditions (noisy (40% noise) case when compared with
clear (0% noise) case), as shown in Figure 4B. Green dotted
line with an arrowhead (e.g., in Fig. 4C) represents the direc-
tion ruled out in asynchrony and synchrony perception con-
ditions in audiovisual task. The node pointed to by the
arrowhead receives the causal influence from the node the
line starts from.

Our interest was to find out how the causal interactions
changed due to increased noise level in stimuli, which in-
creased the task difficulty level. The time domain GC values
calculated from the entire frequency range from all the sub-
jects were compared across conditions for statistical signifi-
cance using paired t-tests. Red solid lines with an arrowhead
represent a significant ( p < 0.05) increase in directed interac-
tions. However, the dotted lines with an arrowhead are used
to indicate that the results are insignificant, red dotted lines
are for increase, and blue dotted lines are for decrease in
GC, as shown in Figure 4. How GC values changed when
the comparison was made between 40% noise-level and
0% noise-level face–house stimuli are shown in Figure 4A
(i). The significant increase in causal influence was found
to occur for the dACC to rAI. The bidirectional interactions
between lAI and rAI, and lAI and dACC did not change sig-
nificantly. The bidirectional causal interactions between
dACC and lAI, and dACC and rAI increased significantly
[Fig. 4A (ii)] when we compared the causal interactions for
55% noise level with 0% noise level in face–house stimuli.
The causal influences that rAI received from lAI and
dACC significantly increased when the causal interactions
for 40% noisy happy–angry faces were compared with that
of 0% noisy happy–angry faces, as shown in Figure 4B.
Also, there was significant increase in causal interaction
from rAI to dACC for 40% noisy versus 0% noisy happy–
angry face stimuli, but interactions of lAI from and to
dACC did not increase significantly (Fig. 4B). In the audio-
visual asynchrony and synchrony perception task, when we
compared asynchrony perception with synchrony perception,
we found the causal influences from lAI and rAI to dACC,
and from dACC to rAI increased significantly, but not
from lAI to rAI and vice-versa (Fig. 4C). When we compared
the causal influences between combined 12% and 20% C
with 100%, in case of RDM direction discrimination task,
significant increases in causal interactions were found from
rAI to both dACC and lAI, whereas the interactions between

lAI and dACC did not change significantly [Fig. 4D (i)].
When the comparison was done for combined 12% and
20% IC with 100%, we found significantly increased causal
influences from lAI to rAI, rAI to dACC, dACC to lAI, and
dACC to rAI, as shown in Figure 4D (ii). The causal influ-
ence decreased, but not significantly, from lAI to dACC in
both of these comparisons [Fig. 4D (i), (ii)].

Across all these tasks, there was a bidirectional network
activity between rAI and dACC. This network activity in-
creased with task difficulty, as shown in Figure 4A (ii), B,
C, D (ii). For difficult tasks, the causal interactions between
dACC and lAI were bidirectional except for audiovisual
discrimination task. The network activity between dACC
and lAI was bidirectional for the face–house discrimination
tasks [Fig. 4A (ii)], but unidirectional from lAI to dACC in
audiovisual asynchrony and synchrony perception (Fig. 4C)
and from dACC to lAI in RDM discrimination task for IC
(12% and 20%), as in Figure 4D (ii) compared to easy tasks
(clear, less ambiguous stimulus types). The increase in net-
work activity from lAI to rAI was significant for noisy com-
pared to clear happy–angry facial stimuli and IC (12% and
20%) compared to 100% [Fig. 4D (ii)], but the opposite rela-
tionship was found for C (12% and 20%) compared to 100%
[Fig. 4D (i)].

In summary, when difficult decisions were compared with
easy decisions, we found (1) significantly increased bidirec-
tional causal influences between rAI and dACC in all tasks,
(2) rAI received significantly higher causal influences from
lAI in happy–angry face discrimination and RDM discrimi-
nation tasks, (3) dACC exerted significantly stronger causal
influences to lAI in all tasks except audiovisual asynchrony
and synchrony perception task, and (4) lAI exerted signifi-
cantly greater causal influences to dACC in face–house dis-
crimination task and audiovisual asynchrony and synchrony
perception task.

Discussion

The functional role of the SN underlying PDM processes
has not been sufficiently examined. We used four sensory dis-
crimination tasks in visual and audiovisual domain with vary-
ing degree of degraded sensory input, measured fMRI-BOLD
signal, and used spectral GC techniques to explore the role of
SN in PDM. We found that the SN involved in all of the task
conditions. The activity level as indicated by BOLD signal in
SN nodes was found to increase with the increase in noise
level or task difficulty. Our GC analysis showed that the key
nodes in SN were functionally connected to each other and
the directed functional connectivity strengths also increase
with noise level. These task difficulty-dependent node and net-
work activities within SN provide a strong support of the role
of SN in PDM. Furthermore, these findings are consistent with
the previously reported finding that the AIs and dACC serve as
part of the decision-making network that integrates informa-
tion and chooses one response over another (Lamichhane
and Dhamala, 2015b) and supported by many other studies
in the field (Ho et al., 2009; Krebs et al., 2012; Rushworth
et al., 2004; Srinivasan et al., 2013; Venkatraman et al.,
2009; Wiech et al., 2010; Woolgar et al., 2011).

Based on the results consistent with previous studies, we
proposed that AIs, key nodes of SN, are involved in integrat-
ing information and processing (Gu et al., 2013; Lamichhane
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and Dhamala, 2015b; Sterzer and Kleinschmidt, 2010).
Although AIs were typically associated with social and af-
fective tasks involving pain, empathy, disgust, and introspec-
tive processes (Craig, 2009; Singer et al., 2009), their role in
information processing is also supported by their widespread
efferent and afferent projections to and from the frontal, pa-
rietal, and temporal lobes (Mesulam and Mufson, 1982a,
1982b; Saper, 2002; van den Heuvel et al., 2009) and func-
tional connection with a large-scale network of sensorimotor,
affective, and cognitive control regions (Cauda et al., 2011;
Chang et al., 2013; Deen et al., 2011; Touroutoglou et al.,
2012). The significantly higher brain activity in AIs during
the difficult task (stimuli with higher noise level or more am-
biguity on stimulus features) conditions might reflect rela-
tively greater task difficulty and indicate the need of more
effort for the integration of information (Calvert, 2001; Tre-
gellas et al., 2006) and PDM (Kosillo and Smith, 2010).

Neuroimaging studies provided the evidence that AIs and
dACC have a close functional relationship in a wide range of
tasks (Binder et al., 2004; Bushara et al., 2001; Dosenbach
et al., 2007; Ham et al., 2013; Ho et al., 2009; Krebs et al.,
2012; Lewis et al., 2000; Ploran et al., 2007; Tregellas
et al., 2006; Venkatraman et al., 2009; Woolgar et al.,
2011). Recent studies using DCM analysis have been
shown that the input to insula (specially rAI) was higher
compared to dACC (Ham et al., 2013; Lamichhane and Dha-
mala, 2015b). Our previous work (Lamichhane and Dha-
mala, 2015b) focused on correct trials only, but Ham and
his colleagues work focused on error trials (Ham et al.,
2013). Similar to the finding of Ham and colleagues, Cai
and colleagues reported a greater rAI activity in ‘‘unsuccess-
ful stop’’ trials than in ‘‘successful stop’’ trials and such rAI
activity was found sensitive to the outcome of stopping but
they found no support for AI role in error processing. The
higher SN activity in error trials was interpreted as an effort-
ful, but unsuccessful, force of the SN (Cai et al., 2014; Ghah-
remani et al., 2015). Hence it is possible that AI involved in
processing information salience or relevance to a current task
or goal and activated whenever the sensory input poses a
challenge by sensory uncertainty or ambiguity, the disambig-
uation of which requires enhanced effort (Sterzer and
Kleinschmidt, 2010). In our study, AI was possibly involved
in integrating the sensory information salient to driving task-
relevant behavior.

Our interpretation of this finding is in accordance to previ-
ously proposed role of AI that it may integrate behaviorally
relevant stimuli (Menon, 2015) and that is further used by
dACC (Lamichhane and Dhamala, 2015b). With the insular
input, the dACC might be coordinating in selection of motor
action and overcoming the conflict in decision-making (Bot-
vinick et al., 2001, 2004; Botvinick, 2007; Ide et al., 2013).
However, for a PDM task that does not require motor re-
sponse, a detailed investigation of the coupling between AI
and dACC is an interesting topic for future research.

In addition, the observed higher BOLD response in dACC
during difficult compared to easier tasks might be due to the
increased task demand of assessing information when the in-
formation is not straight forward (Nee et al., 2011; Rush-
worth et al., 2004; Taylor et al., 2007; Thielscher and
Pessoa, 2007) and insufficient to support one action over an-
other during goal-directed action selection (Dosenbach et al.,
2007; Gluth et al., 2012; Holroyd and Yeung, 2012; Land-

mann et al., 2007; Medford and Critchley, 2010; Rushworth
et al., 2007; Zysset et al., 2006). Although the dACC might
access such information from widespread efferent and affer-
ent projections to and from the large-scale network of sen-
sory, affective, and cognitive regions (Cauda et al., 2011;
Chang et al., 2013; Deen et al., 2011; Mesulam and Mufson,
1982a, 1982b; Saper, 2002; Touroutoglou et al., 2012; van
den Heuvel et al., 2009), insular cortex influence might
play an important role in the selection of appropriate choice
in PDM in difficult task conditions. The observed load-
dependent directed functional connections between dACC
and AIs during tasks further support this notion as does a re-
cent study where authors showed that intact white matter
bundle projecting to/from dACC is important for performing
tasks (Metzler-Baddeley et al., 2012). Lesions in this part of
the brain can lead to difficulties in initiating complex volun-
tary movements and actions (Rushworth et al., 2004; Sriniva-
san et al., 2013; Williams et al., 2004). This conclusion is
also supported by studies which state that the dACC is in-
volved in guided action selection (Kennerley et al., 2006;
Quilodran et al., 2008; Walton et al., 2004). Based on our ev-
idence, we propose that dACC is responsible for high-level
behavioral plans to achieve the goal of our moment-to-
moment actions (Holroyd and Yeung, 2012).

The SN plays an important role in saliency detection, reac-
tivity, facilitating access to attention and working memory
resources once a salient event has been detected. Emerging
evidence suggests that the SN plays a crucial role in switch-
ing between large-scale brain networks involved in exter-
nally oriented attention and internally oriented mental
processes (Sridharan et al., 2008). During the performance
of many cognitively demanding tasks, the SN shows increase
in activation together with the lateral frontoparietal central
executive network (CEN) whereas the default-mode network
(DMN) shows decrease in activation below the resting base-
line (Greicius et al., 2003; Raichle et al., 2001). Moreover,
brain responses within these regions increase and decrease
proportionately in relation to specific cognitive demands
and task difficulty. Once a salient event is detected, the AI
facilitates sustained processing by initiating appropriate tran-
sient control signals that engage cognitive and task control
systems while suppressing the default-mode network (Srid-
haran et al., 2008). In this study, we have not examined
into how important the SN is for the efficient regulation of
activity in the default-mode network, efficient cognitive con-
trol, and better performance of cognitive control tasks. Fur-
thermore, network activity exploring the information flow
among these three networks, SN, CEN, and DMN, with
task difficulty is left for future work, which will enhance
our understanding about the brain mechanisms in PDM. A
potential limitation of our study is that all tasks, although
perceptual in nature, are different from each other in terms
of stimulus modality and level of difficulties. The overall
brain mechanisms (brain areas, including salience nodes
and their network activities) might differ across these
tasks. However, even though the tasks are different, the SN
activity patterns and the network modulations uncovered
here are quite similar for PDM difficulty.

In summary, the activity level based on BOLD signal
changes in the SN nodes was found to increase with the
task difficulty across four tasks. The network activity analy-
sis showed that these nodes functionally interact with each
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other and the network activity increases with task difficulty.
These results provide a strong support for a functional role of
the SN in PDM. These findings altogether provide new in-
sights into the brain mechanisms and the general nature of
high-level information processing, action selection, and per-
ception to action mapping in goal-directed tasks.
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