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It is well known that resonance can be induced by external noise or diversity. Here we show that resonance
can be induced even by a phase disorder in coupled excitable neurons with subthreshold activity. In contrast to
the case of identical phase, we find that phase disorder plays an active role in enhancing neuronal activity. We
also uncover that the presence of phase disorder can induce a double resonance phenomenon: phase disorder
and coupling strength both can enhance neuronal firing activity. A physical theory is formulated to help
understand the mechanism behind this double resonance phenomenon.
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In the human brain, there is a large variety of chaotic
firings of neuron networks and columns that function as
complex oscillators in noisy electrochemical environment
�1�. Phase synchronization of firings is closely associated
with higher order brain functions such as perceptual binding
�2–4�. In such brain processes, synchronization occurs in the
� �approximately between 30–90 Hz� wave across different
regions of the brain �4�. In the awaked cat, for example,
synchronization occurs between areas of the visual and pari-
etal cortex and between areas of the parietal and motor cor-
tex as a means of integrating various aspects of perceptual
properties being observed �3�. This synchrony is particularly
strong between areas subserving related functions. Thus, the
correlated or synchronized firings in different parts of the
brain underlie the information processing associated with
cognition and perception. How does phase disorder in input
signals affect such coherent neuronal firings?

It is well known that noise plays a surprising role in en-
hancing the detection and transmission of weak signals via a
mechanism commonly known as stochastic resonance �SR�
�5–9�. Interestingly, it has been revealed that the electro-
chemical noises in neural firing process provide internal
noise sources to trigger SR in the brain and thus profit the
cognition, perception, and behavior �1,9�. Except noise, it is
also found that the diversity of neurons or excitable oscilla-
tors can induce SR �10�. To advance our understanding of SR
in excitable systems further, here we examine the role of
phase disorder in coherent activity of neurons.

Considering the diversity of neurons and their different
distances to signal source, neurons will have different re-
sponse abilities to external signals, which may be equivalent
to the same strength of signal with different phases. For ex-
ample, surface-feeding fish can determine the prey angle
highly accurate through discriminating the target signal’s ar-
riving time or phase difference between the distributed lat-
eral line organs �11�. This is in fact a random phase that
benefits signal detection. This idea may be useful in making

efficient artificial neural devices �12–14�. In this Rapid Com-
munication, we study how the randomized phases influence
firing synchronization of neurons. We find that the SR can be
induced even by phase disorder in coupled excitable neurons
with subthreshold activity. Furthermore, we find that phase
disorder may play an active role in neural firings and can
induce a double resonance on both the range of phase disor-
der and the coupling strength, which is impossible in the case
of identical phase. A physical theory is formulated to provide
an understanding of the mechanism behind this double reso-
nance phenomenon. These findings may be useful in improv-
ing the quality of artificial devices and helpful in understand-
ing higher-level cognitive and perceptual brain functions.

As a paradigmatic model, FitzHugh-Nagumo �FHN� neu-
ron is usually used to describe the dynamics of spiking of
neural activities. Here, we use it to investigate the effect of
phase disorder. Consider N coupled excitable FHN neurons
as follows:

�ẋi = xi −
xi

3

3
− yi +

g

N − 1�
j=1

N

�xj − xi� ,

ẏi = xi + b + A sin�2�

T
t + �i�, i, j, = 1, . . . ,N , �1�

where xi and yi represent the fast activator and slow inhibitor
variables, respectively, g denotes the coupling strength, � is a
small parameter, and A sin� 2�

T t+�i� is the external signal re-
ceived by neuron i. When the amplitude A is not strong
enough to stimulate firings, the signal is called subthreshold
signal. For a single neuron without external signal, it will be
excitable when b�1. We here focus on the case of sub-
threshold signal with randomized initial phase �i, which may
come from the distributed time delays or nonuniform media
in signal transmission channel. Here, we set N=1000, b
=1.02, �=0.01, A=0.05, and T=5. There is no firing activity
in an isolated neuron with these parameters. For simplicity,
the initial phases �i are chosen randomly from the interval
�−k� ,k��.

We study the effect of increasing the range k from 0 to 1.
To observe the effect easily, we rearrange the neuron indexes
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from 1 to N according to their sorted values of phase �i. The
results are calculated after discarding 400T transient process.
Let the coupling strength g=10−2. We first consider the case
of identical phase with k=0. Our numerical simulations show
that there are no firings in Eq. �1� �see Fig. 1�a��. Then we
gradually increase k from 0 to 0.43. We surprisingly find that
it is possible for part or all neurons to fire or spike coherently
�see Fig. 1�b��. As k is increased to k=0.5, the firing rate is
enhanced and almost all neurons show sustained spikes co-
herently �see Fig. 1�c��. Further increase in k will result in
decrease in firing coherence, see Fig. 1�d�, which appears as
a traveling wave. Therefore, we have observed a phenom-
enon, i.e., firing synchronization, which is purely induced by
disordered phases.

Does the firing pattern induced by phase disorder depend
on the coupling strength? Our numerical simulations show
that for a fixed k, there is a critical gc. The firing patterns
show up only when g�gc. Very interestingly, we find that
the firing patterns disappears when g is too large. Figures
1�e�–1�h� show the results of k=0.5 for g=10−2.6, 10−2.0,
10−1.6, and 10−1.0, respectively. Therefore, we conclude from
Figs. 1�a�–1�h� that there is a double resonance of firing syn-
chronization on both the range of phase disorder and the
coupling strength, which is impossible in the case of identi-
cal phase.

From Fig. 1�d� we see that the population forms a travel-
ing wave although they are not synchronized. As firing is the
basic requirement for cognition and perception, we calculate
the firing rate r which is defined as the average number of
spikes in a period T of the external signal. Figure 2�a� shows
the numerical results for the range of phase disorder where
the “squares” and “circles” represent the cases for g=10−2.6

and 10−2, respectively. It is easy to see that r becomes greater
than 0 at a critical kc and then increase to a saturate value 1
when k increases further. We have observed the similar situ-
ation for the coupling strength, see Fig. 2�b� where the
squares and circles represent the cases for k=0.4 and 0.5,
respectively.

From Fig. 1 we see that there is an optimal k and g for the
firing coherence. To measure the degree of coherence, we
calculate the signal amplification factor Q which character-

izes the response to external signal and is defined at the
signal frequency �= 2�

T as follows �8,15,16�:

Qsin =
1

nT
�

0

nT

2X�t�sin��t�dt ,

Qcos =
1

nT
�

0

nT

2X�t�cos��t�dt ,

Q = 	Qsin
2 + Qcos

2 , �2�

where X�t�= 1
N�i=1

N xi�t�. In our simulations, we set n=50 and
Q is averaged with 20 realizations. Figure 3 shows the results
corresponding to Fig. 2. Obviously, there is a finite range for
both k and g where Q is bell shaped, which is the signature
of SR.

To observe how the double resonance behaves for other
fixed g or k, Fig. 4 shows the dependence of Q on both the g
and k. From Fig. 4 it is easy to see that the positive Q can
only appear when k is greater than a critical range kc, indi-
cating that a finite range of phase disorder is a necessary
condition for coupled neurons with subthreshold signal to
have firing synchronization.

Let us turn to the mechanism of firings induced by phase
disorder. For the case of fixed coupling g, weak phase disor-
der for k�kc will not make a significant difference among
the trajectories of neurons and thus the resulted coupling

FIG. 1. Spatiotemporal patterns for N=1000 and 10T time series
xi�t�. Left panels with g=10−2: �a� k=0, �b� k=0.43, �c� k=0.5, and
�d� k=1; right panels with k=0.5: �e� g=10−2.6, �f� g=10−2.0, �g�
g=10−1.6, and �h� g=10−1.0. The indices are rearranged based on the
ordered phase values.

FIG. 2. �Color online� How the phase disorder and coupling
strength influence the firing rate r with �a� r versus k and �b� r
versus g.

FIG. 3. �Color online� How the phase disorder and coupling
strength influence the signal amplification factor Q with �a� Q ver-
sus k and �b� Q versus g.
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interaction is not strong enough to induce firing in the sys-
tems with subthreshold signal. Increasing k to the range
�kc ,k��, where k� are the values corresponding to the optimal
Q, the resulted coupling interaction by the phase disorder
will be strong enough to trigger firing and the firing rate will
increase with k. On the other hand, the coupling is drawing
the neurons together and thus make the firings be synchro-
nized. However, when we further increase k to k��k�1, the
weak coupling strength g is not strong enough to control the
firing steps and thus results in a self-organized traveling
wave. When k=k�, the coupling g is the appropriate value to
balance the firing step and thus make a largest Q. While for
the case of fixed coupling k, we can make the similar analy-
sis on the varying of g. The only difference is that when g is
too larger, the coupling will suppress the firings induced by
phase disorder.

Now we present a physical theory through a simplified
model to explain the mechanism of firings induced by phase
disorder. Letting X�t�= 1

N�i=1
N xi�t� and Y�t�= 1

N�i=1
N yi�t� be the

means of xi�t� and yi�t�, we can rewrite Eq. �1� as

Ẋ =
1

�
�X�1 − M� −

X3

3
− Y� ,

Ẏ = X + b +
A

N
�
i=1

N

sin�2�

T
t + �i� , �3�

where M = 1
N�i=1

N �xi−X�2. Assuming the uniformly distributed
�i is symmetrical and N is very large, we have �i=1

N sin� 2�
T t

+�i�
2 sin� 2�
T t��1

N/2cos� 2k�
N z�dz
N sin� 2�

T t� sin�k��
k� . Putting

it into Eq. �3�, we obtain

Ẋ =
1

�
�X�1 − M� −

X3

3
− Y� ,

Ẏ = X + b + A sin�2�

T
t� sin�k��

k�
. �4�

Equation �4� can be treated as a single neuron under the
influences of an external signal A sin� 2�

T t� sin�k��
k� and a pertur-

bation M. Since Y changes slowly, we may assume Y

const and then the dynamics of X can be considered as
independent on Y. In this situation, the influence from M to
X becomes extremely important. Considering that M is de-

termined by g and k through xi, we would like to study how
g and k influence the value of M. The left panels of Fig. 5
shows the influence of phase disorder for g=10−2 where
Figs. 5�a�–5�d� denote the cases of k=0, 0.43, 0.5, and 1,
respectively. It is easy to see that M 
0 for k=0 and then
gradually becomes oscillations with the increase in k until an
approximate periodic oscillation at k=1. For the case of Fig.
5�c� with k=0.5, we may treat M approximately as a periodic
signal 1+sin� 2�

T t�. The right panels of Fig. 5 shows the in-
fluence of coupling strength for k=0.5 where Figs. 5�e�–5�h�
denote the cases of g=10−2.6, 10−2, g=10−1.6, and 10−1, re-
spectively. It is easy to see that M also looks like the signal
1+sin� 2�

T t� for g=10−2 in Fig. 5�f�. The reason for M to have
the same period T with the external signal can be understood
as follows. The firings do not occur at the precisely same
time �see Fig. 1�c� or Fig. 1�f��, which results in a nonzero
M. After firing, the neurons return to the resting state and
wait for the next firing. The resting state corresponds to the
stable fixed point of single neuron. During the interval of
resting state, the neuron’s behavior are almost the same, re-
sulting a zero M and thus the same T with the signal. When
M is large, the excitability threshold of Eq. �4� is lowered
and hence the neuron becomes excitable. Therefore, M in-
duces and enhances the resonance.

To show the connection between the approximate periodic
M and the optimal k and g in detail, we simplify M as a
period signal A��1+sin� 2�

T�
t��, where A� is the average of half

values of the local highest amplitudes of M and T� is the
average time intervals between two successive peaks. Take
k=0.5 as an example. According to Figs. 5�e�–5�h�, we plot
the corresponding numerical values of T� and A� versus g for
k=0.5 in Figs. 6�a� and 6�b�, respectively. From Fig. 6�a� it is
easy to see that T� has apparently larger values in the range
10−2.5�g�10−1.3 than other ranges. The similar situation oc-
curs for A� in Fig. 6�b�. To check the correctness of approxi-
mately treating M as periodic perturbation, we substitute k
=0.5 and M =A��1+sin� 2�

T�
t�� into Eq. �4�, the corresponding

Q� is obtained in Fig. 6�c�. From Fig. 6�c� we see that Q�
shows larger values in the moderate range of g only. Com-
paring Fig. 6�c� with Fig. 4, we see that they are approxi-

FIG. 4. �Color online� The dependence of Q on both the g
and k. FIG. 5. �Color online� Evolution of M as function of k and g.

Left panels with g=10−2: �a� k=0, �b� k=0.43, �c� k=0.5, and �d�
k=1; right panels with k=0.5: �e� g=10−2.6, �f� g=10−2, �g� g
=10−1.6, and �h� g=10−1. The dashed lines are the signal 1
+sin� 2�

T t�.
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mately consistent. Furthermore, we find that if we substitute
the exact M obtained from Eq. �1� into Eq. �4�, we will get
the same results of Q as in Fig. 3. The dashed lines in Fig. 3
shows the results from Eq. �4� by the recorded data of M.
Obviously, the symbols and the dashed lines in Fig. 3 have
the same trends, indicating that the Eq. �4� is in charge of the
mechanism of the double resonance from Eq. �1�.

Finally, we briefly discuss the influence of network size N

and the nonidentity of neurons. We find that the observed
double resonance phenomenon remains for different number
N and is robust to the nonidentity of neurons, indicating its
universality in excitable systems.

In conclusion, based on the interesting problem that how
random phases influence the signal detection and transmis-
sion, we have studied the effects of phase disorder on the
collective behavior of globally coupled excitable neurons
with subthreshold activity. We have uncovered a double reso-
nance phenomenon that the signal amplification factor Q
shows resonance on both the phase disorder and the coupling
strength. The resonance on coupling strength may show up
only when the range of phase disorder k is greater than the
critical value kc. A physical theory is provided to explain the
mechanism of the double resonance. This phenomenon may
occur in the case where a weak signal’s arriving time to each
receptor is not always the same, thus the neuron tissue may
benefit from this randomness to enhance signal detection and
further transmission.
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