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Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for

a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or

out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur

in a network of coupled bursting neurons with a variety of coupling types. The transitions are

marked by nonlinear changes in both temporal and phase-space characteristics of the coupled

system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron

models and discuss the implications of these results in understanding collective dynamics of

bursting neurons in the brain. VC 2011 American Institute of Physics.

[doi:10.1063/1.3584822]

A large body of experimental work on brain activity has

demonstrated that phase synchronization of neuronal

oscillations is the basis for various percepts and actions,

such as perceptual decision-making, attention and mem-

ory processes, awareness, sensory-motor, or multisensory

integration. Synchronized neuronal oscillations can occur

in neurons from a small brain region to a large-scale net-

work of distributed brain regions. Synchrony in networks

of spatially distributed neurons involves signal transmis-

sion time delays because of finite propagation speeds and

axonal lengths. In recent years, many theoretical and

computational studies of nonlinear oscillators reported

various interesting effects of time-delays on phase syn-

chrony. One of the important time-delay induced effects

is a phase-flip transition leading to synchrony or out of

synchrony. Here, we confirm and extend this time-delay

induced effect in a class of multi-time scale dynamical

systems such as bursting neurons. We find that phase-flip

transitions are general phenomena and can occur in a

network of coupled bursting neurons with a variety of

coupling types. The transitions are marked by abrupt

changes in both temporal and phase-space characteristics

of the coupled system. We show that these phase-transi-

tions occur in networks of different types of bursting neu-

ron models and discuss the implications of these findings.

I. INTRODUCTION

Signal transmission time delays are the result of axonal

conduction and chemical synaptic processes and are inherent

in networks of neurons in the brain. While the chemical syn-

aptic time delays are small (�2 ms), the axonal conduction

delays, which depend on the distance between neurons in the

brain, can reach upto tens of milliseconds.1–3 Time delays

comparable to time-scales of neuronal oscillations are known

to have significant effects in the ensemble activity of neu-

rons. Thus, in modeling studies of neurons and networks, the

influence of time delays on the ensemble activity has

received a great deal of attention recently.4–16 In networks of

coupled neurons, time delays have been shown to affect not

only the amplitude dynamics generating instabilities,8 oscil-

lation death,11,12 enhancement or suppression of synchron-

ized oscillations,4–6,17 or phase-coherent oscillations,9 but

also the phase dynamics leading the system to or out of syn-

chrony.13–16,18–21 This time-delay-induced phase transition,

marked by a relative phase change from zero to p and a dis-

continuous change of the average oscillating frequency, was

named as phase-flip bifurcation.22 Such time-delay induced

effects in phases and frequencies have not been systemati-

cally studied in different coupling types using multi-time

scaled dynamical systems like coupled bursting neurons.

At the phase-flip bifurcation point, the ensemble activity

of coupled periodic or chaotic oscillators changes from in-

phase to out-of-phase (phase difference of p) oscillations (or

vice versa).22 This is accompanied by a discontinuous change

in the average frequency of oscillations and also by a discon-

tinuity in the largest negative Lyapunov exponent across a

critical delay or coupling strength in time-delayed interac-

tion.19 The average frequency shows a nonlinear dependence

with time-delay and coupling strength. A time-delayed inter-

action was identified to be the necessary condition for this

transition. This phenomenon was observed in various

dynamic regimes such as in oscillator death, periodic, quasi-

periodic and chaotic oscillations.19,22 Bursting neurons have

distinctly different multiple time scales of oscillations: spike

activity with fast time scale and burst activity (consisting of

two or more spikes) with slow time-scales. How do bursting

neurons respond to time-delayed interactions? Are there

time-delay induced phase-flip transitions to or out of syn-

chrony? What are the general characteristics of thesea)Electronic mail: mdhamala@gsu.edu.
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transitions in excitatory and inhibitory neuronal networks? In

this paper, we investigate into these questions using two

bursting neuron models: Hindmarsh-Rose (HR) neuron23 and

Leech-Heart interneuron (IN).24,25

Here, we show that the phase-flip bifurcation can also

occur in time-delayed coupled bursting neurons. But, in the

network of these neurons, the phase-transition from syn-

chrony to out-of-synchrony occurs with a different maximum

relative phase, not p. The average frequency and the largest

negative Lyapunov exponent show discontinuous changes at

a critical delay and coupling strength. These results hold true

in a variety of couplings: electrical, and excitatory and inhib-

itory synaptic couplings, and also in a network of three or

more neurons. These results may help understand the mecha-

nisms of a long-distance synchrony of oscillations underly-

ing brain functions or dysfunctions.

II. METHODS AND RESULTS

A. Time-delayed coupled network model

We begin by formulating a general model for a network

of neurons with time-delayed interactions. An example of a

time-delayed interaction between two neurons is shown in

Fig. 1. Consider a coupled system of N bursting neurons.

Each neuron when isolated follows _X ¼ FðXÞ, where X is an

m-dimensional vector of dynamical variables such as mem-

brane voltage and gating variables in Hodgkin-Huxley for-

malism, and F(X) is the velocity field. The coupled system is

described by the following equations:

_Xi ¼ FiðXiÞ þ
�

Ki

XKi

j¼1

AijHðXi;Xj; sÞ; i ¼ 1;…;N (1)

where subscript i in Xi and Fi represents i-th neuron. Here Ki

is the number of connections to the i-th neuron, namely its

degree and 1 � Ki < N, � is the coupling strength, s > 0 is

the net time delay—the time for the action potential to propa-

gate along the axon connecting the pre-synaptic neuron j to

the post-synaptic neuron i. The connection topology is given

as Aij¼ 1 if the neurons i and j are connected to each other

and Aij¼ 0 otherwise. The coupling function H : Rm ! Rm

specify the manner in which the neurons i and j are coupled,

with HðXi;Xj; sÞ being a function of Xi(t) and Xjðt� sÞ. For

a three-variable neuron model, Xi ¼ ½xi; yi; zi�T and

H ¼ ½gðxiðtÞ; xjðt� sÞÞ; 0; 0�T , where g is a coupling func-

tion, and the superscript T denotes the transpose. If the neu-

rons i and j are connected via a gap junction (electrical

coupling), then the coupling function takes the form

gðxiðtÞ; xjðt� sÞÞ ¼ ðxjðt� sÞ � xiðtÞÞ. For a coupling via a

chemical synapse, it is hðxiðtÞ; xjðt� sÞÞ ¼ �ðxiðtÞ � VisÞ
Cðxjðt� sÞÞ, where the reversal potential Vis can set the

threshold for excitation or inhibition, and Cð�Þ is 1 for posi-

tive (*) and 0 otherwise. If Vis > xiðtÞ for all xi and t, the cou-

pling term is always positive and the synapse is excitatory,

i.e., the input to ith neuron via coupling can enhance the ac-

tivity of this neuron. On the other hand, if Vis < xiðtÞ for all

xi and t, the coupling term is negative and synapse is inhibi-

tory, i.e., the input to ith neuron via coupling can suppress its

activity. Usually, Cð�Þ is approximated by a sigmoidal func-

tion: 1=½1þ expf�bðxjðt� sÞ �HsÞg�, where b determines

the slope of the function and Hs is the firing threshold. Fig. 1

shows a time-delayed coupling setup with two neurons.

B. Neuron models

Both Hindmarsh-Rose neuron23,26 and Leech-Heart

Interneuron24,25 models are known to produce bursting activ-

ity in extended ranges of system parameters. Here, to study

the time-delay induced phase-transitions in a bursting activ-

ity, we have considered using them both. Three-variable HR

neuron26 is a phenomenological model although the original

two-variable model23 was constructed to describe snail’s

neuron dynamics. The IN neuron describes the electrical ac-

tivity of neurons that control Leech’s heart.

The HR neuron dynamics is described by the following

set of equations:26,27

_x ¼ y� ax3 þ bx2 þ zþ Iext

_y ¼ c� dx2 � y

_z ¼ r½sðx� x0Þ � z�
(2)

where x is the membrane potential, y is the fast current (re-

covery variable), and z is the slow current also known as

FIG. 1. (Color online) Schematic of time-delayed neuronal interaction. Neuron 2 sends an action potential or a burst of action potentials to neuron 1 at time t,
and neuron 1 feels it at later time tþ s, where s is the time delay. This delay in a chemical coupling is due to axonal conduction and synaptic processes,

whereas time delay in electrical coupling is only due to axonal conduction. In modeling a time-delayed interaction from neuron 2 to neuron 1, the coupling

term to neuron 1 can take the delayed input from neuron 2. The coupling function f12 depends on this delayed input, both for electrical and chemical synaptic

couplings, where g is coupling strength, x1, x2 are potentials of neuron 1 and neuron 2, and Cð�Þ is 1 for positive (*) and 0 otherwise. A part of the schematic

was adapted from Izhikevich, Eugene M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, figure 1.1, page 2, adapted, VC 2006

Massachusetts Institute of Technology, by permission of The MIT Press.
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adaptation variable. Here, a¼ 1.0, b¼ 3.0, c¼ 1.0, d¼ 5.0,

s¼ 4.0, r¼ 0.006, x0¼ –1.60, and Iext is the external current

input. r is the ratio of fast/slow time scales. This system

exhibits a multi-time-scale spike-burst chaotic behavior for

2:92 < Iext < 3:4, as shown in the bifurcation diagram and

Lyapunov exponents (Fig. 2, left panel).

The Leech-Heart Interneuron model has the following

equations of motion:25

_v ¼ �2½30 m2ðvþ 0:07Þ þ 8ðvþ 0:046Þ
þ 200f 3ð�150; 0:0305; vÞhðv� 0:045Þ�

_h ¼ 24:69½ f ð500; 0:0333; vÞ � h�
_m ¼ 4½f ð�83; 0:018þ Vshift

K2 ; vÞ � m�;

(3)

where v is the membrane potential, h and m are membrane

channel gating variables. h is associated with fast ionic cur-

rent such as flow of sodium ions and m is the slow gating

variable. f ða; b; vÞ ¼ 1=½1þ expðaðbþ vÞÞ� is a Boltzmann

function which describes the kinetics of activation/inactiva-

tion of ionic currents. Vshift
K2 is an experimentally accessible

bifurcation parameter that is a deviation from the average

potential v¼ –0.018 V corresponding to the semi-activated

potassium channel at f¼ 1/2. IN neuron has periodic and

chaotic (or high-period periodic) states as shown in the bifur-

cation diagram and Lyapunov exponents (Fig. 2 right panel).

Typical phase-space portraits and corresponding potential

time series of burst activity for both of these neuron models

are shown in Fig. 3. IN neuron is bistable—period 1 (shown

in Fig. 3 with red) and chaotic state (or high period periodic

state, shown in blue) coexist around Vshift
K2 � �0:024 V. Both

of these oscillators show the spike-burst activity (multi-time

scale dynamical behaviors) in a wide range of bifurcation pa-

rameters. There are two distinct time-scale of oscillations

and the trajectories in the phase-space move slowly in one

region whereas they move fast in the other region. The y–z
plane along the firing threshold x¼ –1 approximately sepa-

rates these two regions in the HR neuron, and v � �0:04 V

approximately separates in the IN neuron case. Different

time scales of oscillations can also be seen in voltage traces:

slow motion when the membrane potential is below the firing

threshold and fast when it is above [voltage traces in Fig. 3

(lower panel)]. In non-delayed coupled systems consisting of

these bursting neuron types, synchrony in individual bursts

can be easily achieved through coupling of individual neu-

rons as a precursor to a complete synchrony,27 and by vary-

ing coupling strengths, or modifying connections of neuronal

subnetworks.28

FIG. 2. (Color online) Bifurcation diagrams (upper panel) and first two Lyapunov exponents (lower panel) for Hindmarsh-Rose (HR) neuron (left panel) and

Leech-Heart Interneuron (IN) neuron (right panel) models. These results help us understand the qualitative behaviors of single neurons. Here, the bifurcation dia-

grams are obtained by computing the times Dt between successive spikes, including the time intervals between bursts of spikes. As the parameter, external cur-

rent to a neuron (Iext) is decreased from 4.0 to 1.5, HR neuron goes through a series of transitions: from period 1 to chaos via period-doubling cascade and back

to periodic behaviors. The maximum Lyapunov exponent (lower left, blue) shows that the HR system is chaotic approximately for the range 2:92 < Iext < 3:40.

In the case of IN neuron, as the parameter, Vshift
K2 , is decreased from –0.01 to –0.025 volt, it goes through a series of period-adding bifurcation.31,32 There is a cha-

otic (or many period) regime around –0.024 volt, which belongs to one attractor state. There is another period-1 attractor at and around this parameter value.

This region shows bistability of chaotic attractor and period-1 attractor (see Fig. 3).
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C. Results

In order to study the effect of time-delay and coupling

strength in synchrony of bursting neurons, we simulate the

networks of time-delayed coupled neurons (�2) using HR

and IN neuron models as described in Secs. II A and II B.

The simulated coupling types include electrical synapses

(also known as gap junctions), and excitatory and inhibitory

chemical synapses. Across all types of weak couplings and

in both systems of coupled HR and IN neurons, we observe

time-delay induced phase-flip bifurcations to synchrony or

out-of-synchrony as time delay s is varied. In the case of per-

iodic or quasi-periodic spike activities (with no burst activ-

ities present), the coupled system of two neurons exhibits

oscillations out-of-phase by p. However, with burst activ-

ities, the phase-shift across the transition is less than p both

for spikes and bursts. Here, we present some representative

cases in Fig. 4–6.

In Fig. 4, we consider the case of two bursting IN neurons

identically coupled with a time-delayed inhibitory chemical

synapse and initial conditions from the antiphase states. In the

absence of time-delay (s ¼ 0), these two identical neurons

would oscillate in antiphase. If s is changed significantly at

non-zero coupling strength, then we start to see the changes in

the relationship of two bursting activities. At s ¼ 0:2 and

� ¼ 0:25, these two neurons are out-of-phase with each other.

At this coupling strength, as s is changed to 0.25, they get into

in-phase and then at s ¼ 0:3, they are out-of-phase again

(shown in the first column of sub-figures). Similarly, at non-

zero time delay also, running the system through coupling

strengths, one can bring about the phase-transitions as shown

in Fig. 4 (second column). For non-delayed inhibitory cou-

pling, the stable in-phase synchronization coexists with anti-

phase bursting within a broad range of initial conditions and

parameter values of the network.29 For delayed coupling with

small delays, this will be true also. In Fig. 5, we show that the

phase-transitions can also occur even when the bifurcation pa-

rameter, such as Vshift
K2 in the case of the interneuron model, of

the individual system is changed at non-zero delay and non-

zero coupling. Such phase-transitions to synchrony or to out-

of-synchrony can also be observed with HR neurons and with

an excitatory electrical coupling (Fig. 6). These transitions are

seen with discontinuous changes in the largest negative Lya-

punov exponent (Fig. 6, top panel), in oscillation frequencies

(X1;X2 in Fig. 6, the second panel), in spike phase-difference

(D/s, third panel), and burst phase-difference (D/b, third

panel) at s � 3:7. The phase difference between the oscilla-

tions of two bursting neurons is defined as: D/ ¼ hj/1ðtÞ
�/2ðtÞji, where h:i denotes the average over time and

/1;2 ¼ tan�1 ½Y1;2ðtÞ=X1;2ðtÞ� with X and Y representing the

variables projected onto the plane of fast variables for spike

activity or onto the plane of one fast and one slow variable

for burst activity. Here, the phase-difference is less than p.

This is because of the multi-time scales inherent in the sys-

tem. At the transition from in-phase to out-of phase, the

oscillators are out-of phase because of their motion over the

fast manifold, i.e., one oscillator can be ahead or behind the

other by a time interval of about an inter-spike interval. At

this transition, two negative Lyapunov exponents avoid

crossing each other.

We now consider three, four, and eight IN neurons in a

network. We performed these simulations to see how the

phase-transitions to synchrony as seen in two coupled

FIG. 3. (Color online) Bursting activity

of HR (left panel) and IN (right panel)

neurons. The first row of 3D-plots shows

chaotic (blue) and periodic (red) attractors

(phase space plot of three-variables) of

the systems and the second row shows

membrane potential time series (blue trace

for chaotic time series, red trace for peri-

odic time series).
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FIG. 5. (Color online) Time-delay

induced phase-flip transitions in coupled

bursting neurons by changing bifurcation

parameters values. Two bursting Leech-

Heart interneurons coupled with a time-

delayed inhibitory chemical coupling

undergo phase-transitions from out-of-

phase state to in-phase and again to out-

of -phase state as Vshift
K2 is changed from

–0.0243 to –0.024 and to –0.0237 at

fixed � ¼ 0:25 and s ¼ 0:25 in all cases.

In the absence of such a time-delayed

interaction, these neurons would oscil-

late in out-of-phase in a weakly coupled

interaction.

FIG. 4. (Color online) Time-delay

induced phase-flip transitions in coupled

bursting neurons. Two bursting Leech-

Heart interneurons coupled with a time-

delayed inhibitory chemical coupling

undergo phase-transitions from out-of-

phase state to in-phase and again to out-

of-phase state as s is changed from 0.2

to 0.25 and to 0.3 at fixed non-zero cou-

pling (first column of plots). The system

goes from in-phase state to out-of-phase

and back to in-phase when e is changed

from 0.15 to 0.2 and to 0.25 at fixed

non-zero time-delay (second column). In

the absence of such a time-delayed inter-

action, these neurons would oscillate in

out-of-phase bursts in a weakly coupled

interaction.
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neurons generalize a network consisting larger number of

neurons. Fig. 7 in the top panel shows an example of four

neurons connected in a ring with excitatory synaptic cou-

pling. As time-delay s changes from 0.25 to 0.30, the system

goes from out-of-phase state to in-phase state. Here, the out-

of-phase state is the most stable when the phase-difference

between the nearest neighbor is 2p=N, where N is the num-

ber of oscillators, and in this example it is 4. For a network

of eight oscillators, this phase difference becomes 2p=8. We

have used the similarity function as described in Ref. 33 to

find the phase-differences between neurons. Here, the neu-

rons in the periphery close to each other in a ring topology

have p=2 phase difference whereas off-diagonal neurons far-

thest from each other are out-of-phase by p. These network

results extend the previous findings19 from two oscillators.

The phase-flip transitions can be demonstrated even in

weakly coupled phase-oscillators.34 Consistent with such

finding, our results of weakly coupled oscillators indicate

that the phase-flip transitions are primarily due to the intrin-

sic time-scales of the system and time delays in couplings.

Thus, these results of phase-flip transitions in weakly

coupled systems can be expected to remain robust to varia-

tions of number of nodes or the system size.

III. CONCLUSIONS

In summary, we uncover a phenomenon of phase-flip

bifurcation in networks of bursting neurons with a variety of

time-delayed coupling types and topology. Unlike the previ-

ous findings in systems of periodic or chaotic oscillators,

coupled bursting neurons undergo time-delay-induced phase

transitions to asynchrony out of synchrony by a phase differ-

ence less than p. The transitions are marked by abrupt

changes in the second negative Lyapunov exponent, average

frequency, and relative phase difference. In the case of near-

est neighbor excitatory coupling, oscillators next to each

FIG. 6. (Color online) Characteristics

of time-delay induced phase transitions

shown with time-delayed electrically

coupled HR neurons. The time-delay

induced phase-flip transitions are marked

by the abrupt changes in the largest neg-

ative Lyapunov exponent (k), oscillation

frequencies (X1 and X2), and relative

phases between spikes (D/s) and

between bursts (D/b). Unlike periodic

and chaotic oscillators, bursting neurons

can go from in-phase burst synchrony

(as shown in the figure on the fourth

row, right) to out-of-phase state (the

fourth row, left) with phase-difference

less than p near the bifurcation point.
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other are at an equal phase difference around a circle: for

three oscillators, the phase difference between neighbors is

2p=3; for four, it is 2p=4, which generalizes to N oscillators

with phase difference of 2p=N. Time-delays are unavoidable

in spatially distributed dynamical systems like the neurons in

the brain and can play significant roles in large-scale

synchronized oscillations in the brain. Time-delayed cou-

pling can, for example, induce synchronization between two

cells with intrinsic antiphase bursting activities. Even in mu-

tual inhibition among multiple neurons, synchrony of burst-

spike activities can occur with time-delayed coupling. These

time-delay-induced transitions may help explain the co-exis-

tence of various frequency rhythms in different parts of a

large neuronal network.
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2p=N between nearest neighbors, where

N is the number of neurons in the

network.
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