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Enhancement of Neural Synchrony by Time Delay
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In a network of neuronal oscillators with time-delayed coupling, we uncover a phenomenon of
enhancement of neural synchrony by time delay: a stable synchronized state exists at low coupling
strengths for significant time delays. By formulating a master stability equation for time-delayed
networks of Hindmarsh-Rose neurons, we show that there is always an extended region of stable
synchronous activity corresponding to low coupling strengths. Such synchrony could be achieved in the
undelayed system only by much higher coupling strengths. This phenomenon of enhanced neural
synchrony by delay has important implications, in particular, in understanding synchronization of
distant neurons and information processing in the brain.
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plex neurons, such as Hindmarsh-Rose neurons in time-
delay networks. Our focus is on (i) the synchronizing

2:92< Iext < 3:40. We now consider two HR neurons
coupled linearly via the x component as follows:
Synchronization of coupled nonlinear oscillators is a
widespread phenomenon occurring in physical and bio-
logical sciences [1–6]. The observations of synchronous
neural activity in the central nervous system [5,7] have
stimulated a great deal of theoretical work on synchroni-
zation in coupled neural networks. These observations
suggest that neural activity is a cooperative process of
neurons and synchronization plays a vital role in infor-
mation processing in the brain, for example, in processing
information from different sensory systems to form a
coherent and unified perception of the external world.
The information flow in coupled systems is not generally
instantaneous. On the contrary, finite speed of signal
transmission over a distance gives rise to a finite time
delay. For example, the speed of signal conduction
through unmyelinated axonal fibers is on the order of
1 m=s resulting in time delays up to 80 ms for propagation
through the cortical network [8]. For experimental rele-
vance, the questions of prime importance are then about
the effects of time delays and the stability of synchroni-
zation. Some theoretical studies involving limit-cycle
oscillators coupled via time delays have shown multi-
stable behaviors and oscillator death as effects of time
delays [9–11]. Recent experiments have confirmed several
theoretical predictions of coupled time-delay oscillators
[12,13]. In this study, we uncover a phenomenon of en-
hancement of synchrony by delay, that is, spike synchrony
in Hindmarsh-Rose neurons [14,15] in a time-delay net-
work at low coupling strengths.We provide stability equa-
tions to examine the stability of synchronized states for
any linear coupling arrangement in time-delay networks.

The Hindmarsh-Rose model [15] of a neuron can ex-
hibit fixed point, periodic, and chaotic (spiking and burst-
ing) behaviors. To our knowledge, there have not been any
general results for the synchronization behavior of com-
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behaviors of time-delayed neural networks as a function
of time delays and coupling strengths and (ii) the stability
of synchronized states. Although a time-delay system has
an infinite number of Lyapunov exponents because of the
infinite dimension of the phase space, we are interested in
developing a general approach to examine the stability of
the synchronized states by computing the maximum
Lyapunov exponent following a similar scheme as pro-
posed by Pecora and Carroll for nondelay coupled sys-
tems in Ref. [16].

In this Letter, we report a phenomenon of enhancement
of spike synchrony as a result of time delays in a time-
delay system of two chaotic Hindmarsh-Rose neurons.
The computation of the maximum Lyapunov exponent for
the transverse directions to the synchronization manifold
shows an extended region of synchronized states at very
low coupling strengths in �� � parameter space (where �
is a coupling strength and � is the time delay). We also
formulate master stability functions for an arbitrary num-
ber of neurons in a time-delay network. The master
stability equation allows us to calculate the maximum
Lyapunov exponent and determine the stability of the
system for any linear coupling scheme. The possible
implications of these results are also discussed toward
the end.

As an oscillator unit of our time-delay neural network,
we choose the Hindmarsh-Rose (HR) neuron described
by the following equations of motion [15]: _xx � y�
ax3 � bx2 � z� Iext, _yy � c� dx2 � y, _zz � r�s�x�
x0� � z�, where x is the membrane potential, y is associ-
ated with the fast current, Na� or K�, and z with the slow
current, for example, Ca2�. Here, a � 1:0, b � 3:0, c �
1:0, d � 5:0, s � 4:0, r � 0:006, x0 � �1:60, and Iext
is the external current input. This system exhibits a
multitime scaled burst-spike chaotic behavior for
2004 The American Physical Society 074104-1
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FIG. 1 (color online). The maximum transverse Lyapunov
exponent �?max. (a) �?max versus � for � � 0 and (b) intensity
represents the values of �?max in ��� �� parameter space. The
arrow points to the region of synchrony at very low coupling
strengths, revealing the phenomenon of enhancement of syn-
chrony via time delay. The dashed line drawn at � 
 0:036 to
the left of this region is the zero-exponent contour line that
separates this stable region with the unstable one, where �?max

at � � 0:0 is 
 0:17.
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_xxi � yi � ax3i � bx2i � zi � Iext � ��xj�t� �� � xi�, _yyi �
c� dx2i � yi, and _zzi � r�s�xi � x0� � zi�, where � � 0 is
the coupling strength, � � 0 is a measure of the time
delay, and the indices i � 1; 2, j � 2; 1. The first neuron
receives the signal from the second neuron after a time
delay � and vice versa. The dynamics of the synchronized
state, �x1; y1; z1� � �x2; y2; z2�, are then be represented by

_xx � y� ax3 � bx2 � z� Iext � ��x�t� �� � x�; (1)

_yy � c� dx2 � y; (2)

_zz � r�s�x� x0� � z� (3)

as the differences jx1 � x2j; jy1 � y2j; jz1 � z2j vanish in
the limit of t ! 1. This occurs when the synchronization
manifold becomes stable. If we now transform to x? �
x1 � x2, y? � y1 � y2, and z? � z1 � z2, in the limit
when these variables are very small (x21 � x22 
 2xx?
and x31 � x32 
 3x2x?), the motion transverse to the syn-
chronization manifold can be described by the following
equations:

_xx? � y? � ax2x? � 2bxx? � z? � ��x?�t� �� � x?�;

(4)

_yy? � �2dxx? � y?; (5)

_zz? � r�sx? � z?�: (6)

The solutions of Eqs. (4)–(6) determine the stability
whether the variations (x?; y?; z?) will grow or shrink
as t ! 1. The minimal condition for stability of the
synchronized state represented by Eqs. (1)–(3) is that
the Lyapunov exponents associated with Eqs. (4)–(6)
are negative for the transverse subsystem. Even though
a delay system lives in an infinite dimensional space, we
really need to calculate the largest transverse exponent,
the sign of which will determine the stability of synchro-
nized states. By solving Eqs. (4)–(6) in combination with
Eqs. (1)–(3), we determine the maximum transverse
Lyapunov exponent, shown in Fig. 1 for � � 0. In the
numerical integration of these equations, we evolve a unit
vector of �x?; y?; z?� to 106 number of iterations or until
the vector grows or shrinks to a size of 10�8 in the finite
dimensional phase space version of the infinite dimen-
sional delay system. This procedure is repeated many
times to collect the expansion or contraction rates of
the vector, which approximately estimates the maximum
Lyapunov exponent. Figure 1(a) shows that the synchro-
nized state is stable at � � 0:5 for � � 0. Figure 1(b) is a
plot of the maximum exponent in the �� � parameter
space: there are mainly two regions of negative exponents
for small � along the � axis pointed out by an arrow and
for small � along the � axis. Here, we see that even at very
low coupling strengths, there is a region of stability (as
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shown by the arrow) for synchronized states.
Figures 2(a)–2(d) show the time series and their correla-
tions at � � 0 and � � 8:0 for the same low coupling
strength, � � 0:1. As an example, Figs. 2(b) and 2(d)
show that the HR neurons synchronize completely via
time delay even at � � 0:1. On the other hand, there is no
synchrony when � � 0 at the same �, shown in Figs. 2(a)
and 2(c). This underscores the point that time delay can
also enhance synchrony in multitime scale oscillations
such as coupled HR neurons. The bifurcation analysis of
the synchronized state [Eqs. (1)–(3)] as a function of � at
different time delays reveals that much of the parameter
space prevails with periodic oscillations and time delays
stabilize the dynamics in one of the least unstable peri-
odic orbits.

Following a similar scheme used by Pecora and Carroll
in Ref. [16], we now turn to formulate general master
stability functions for a time-delay network that has a
self-time-delay term. The equation is as follows:

_xx i � F�xi� � �
X

j

GijH�xj�t� ���; (7)
074104-2
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FIG. 3. Master stability functions at (a) � � 0:0 and (b) � �
8:0 for x-coupled Hindmarsh-Rose neurons. The lines are
isoclines for the constant maximum Lyapunov exponent.
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FIG. 2. Time series and membrane potential correlation be-
tween neurons: a complete synchrony at very low coupling
strengths for � � 0. (a) x1 and x2 versus t at � � 0; � � 0:1,
(b) x1 and x2 versus t at � � 8:0; � � 0:1, (c) x2 versus x1 at
� � 0; � � 0:1, and (d) x2 versus x1 at � � 8:0; � � 0:1.
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where xi is the dynamical variable vector ofm dimensions
for site i in an N oscillator array. The isolated dynamics
for each node is _xxi � F�xi�. � is the coupling strength, H :
Rm ! Rm is the coupling function, and G is an N � N
matrix which determines node-to-node coupling. The
N � 1 constraints x1 � x2 � . . . � xN define the syn-
chronization manifold of the state x1. For the invariance
of the synchronization manifold, the rows of Gij all sum
to zero:

PN
j�1 Gij � 0, which also guarantees the diagno-

lizability of G. Considering variations in all possible
directions to the synchronized state x and diagonalizing
G block by block, we arrive at the generic block-
diagnolized variational equation for transverse modes
as follows:

_���t� � DF�x���t� � ���
�������
�1

p
��DH�x����; (8)

where x� � x�t� ��, � is the multidimensional perturba-
tions, �� � ��t� ��, and ���

�������
�1

p
�� is the eigenvalue

of �G. Imaginary eigenvalues arise from asymmetric
couplings. DF�x� is the Jacobian matrix evaluated on
the synchronization manifold and DH�x�t� ��� is an
m�m matrix E that determines which of the oscillator
components are coupled. For example, for x-component
coupling in a network of HR neurons, only the first
element is unity and all the rest are zero. Separating �
into real part �r and imaginary part �i, we get

_��r � DF�x��r � �DH�x���r� � �DH�x���i�; (9)

_��i � DF�x��i � �DH�x���i� � �DH�x���r�; (10)

where �r� � �r�t� �� and �i� � �i�t� ��. The maxi-
074104-3
mum transverse Lyapunov exponent (�?max) can be esti-
mated from Eqs. (9) and (10), which are the master
stability equations. �?max is a function of �, �, and �.
For given coupling strength and delay times, one can
locate a point in ��;�� space and identify the sign of
�?max at that point. The negative value of �?max confirms
that all the transverse eigenmodes are stable and the
synchronous state is stable at this point.

Figure 3(a) shows a master stability function in
(�;�)-parameter space at � � 0 for x-coupled HR neu-
rons. The zero-stability curve represents the boundary
between the stable region on the left and the unstable
region on the right. The negative equistability curves are
roughly symmetrical in the � directions about the � axis.
��;�� � �0; 0� corresponds to a completely uncoupled
state and �?max is greater than zero at this point.
Figure 3(b) shows a master stability function for � �
8:0. The equistability curves are all positive and sym-
metrical in the � directions about the � axis. It appears
from these symmetrical curves that there would be a tiny
stable region close to the � axis on the negative side near
the origin. However, our numerics with a grid of 500�
500 in (�;�)-parameter space could not establish that for
this network with the self-time-delay coupling term.

On the other hand, the master stability equations for an
array of N neurons without the overall self-delayed in-
teraction coupled in a similar way as the two-neuron
system described by Eqs. (1)–(3) can be written as fol-
lows:

_xxi � F1�xi; �� � F2�xi�; �� � �
X

j

GijH�xj��; (11)
074104-3
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FIG. 4. Master stability functions at � � 8:0 and � � 0:05 for
x-coupled Hindmarsh-Rose neurons. Notice the stable region
close to the � axis near the origin in the negative side.
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where, for an x-component coupling, for instance,
F1�xi; �� � F�xi� � �Gii�1 0 � � � 0�xi, and F2�xi; �� �
��Gii�1 0 � � � 0�xi�. Here, the synchronized state is _xx �
F1�x; �� � F2�x�; ��. This results in the following master
stability equations:

_��r � DF1�x; ���r � �DF2�x�; �� � �DH�x����r�

� �DH�x���i�; (12)

_��i � DF1�x; ���i � �DF2�x�; �� � �DH�x����i�

� �DH�x���r�: (13)

The maximum transverse Lyapunov exponent (�?max)
can be estimated from these equations. The synchronized
state also depends on the � value. Figure 4 shows the
master stability curves for such a system at � � 8:0; � �
0:05. There is a stable region close to the � axis near the
origin in the negative side. This is evidence that time
delay does not always destabilize synchronized states,
but also it stabilizes the synchronized states for the right
choice of parameters. Thus, the phenomenon of enhance-
ment of synchrony by delay can be observed in a coupled
system of N HR neurons.

In any physical or biological systems, time delays are
unavoidable in signal transmission. Neural synchroniza-
tion was reported to occur between the brain areas sepa-
rated by distances up to several centimeters [17–19].
Visuomotor integration was found to be associated with
zero time-lag synchronization of signals recorded from
the visual and parietal areas, and motor and parietal areas
of the awake cat [20]. Time delay seems to facilitate
synchronization between the distant cortical areas. Our
results suggest that this long-range neuronal synchroni-
zation is possible between those areas which are coupled
with predominantly low connectivity strengths.

In conclusion, we have uncovered a phenomenon of
enhancement of spike synchrony by time delay in a
coupled system of neurons. Even for significant time
delays, a stable synchronized state exists at a very low
coupling strength, which may account for long-range
neural synchrony observed in experiments. We formulate
074104-4
master stability functions for an arbitrary linear coupling
arrangement in time-delay networks of a large number of
bursting neurons.
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